
®

A
 p

u
b
lic

a
ti
o

n
 o

f
O

S
R

 O
p
e
n
 S

y
s
te

m
s
 R

e
s
o
u
rc

e
s
,
In

c
.

; The commandments of x64 assembly:

;

; 1. Thou Shalt Not Write Inline Assembly

; 2. Thou Shalt Generate Unwind Data

; 3. Thou Shalt Comment Each Line of Assembly

;

include macamd64.inc

;

; External C function to read an article

;

; NTSTATUS

; TheNTInsiderReadSingleArticle(

; PCHAR ArticleDescription,

; ULONG_PTR PageNumber,

;);

;

EXTERN TheNTInsiderReadSingleArticle:PROC

.DATA

PeterPontificates BYTE "COMPUTER SCIENCE EDUCATION? (YUP, STILL SUCKS)", 0

NewWaysToConnect BYTE "INTRODUCTION TO SIMPLE PERIPHERAL BUS DEVICES AND DRIVERS", 0

TipsForUsingIoTargets BYTE "A FEW RULES TO MAKE YOUR USE OF I/O TARGETS SIMPLE", 0

TodayInDriverSigning BYTE "COLOR ME CONFUSED (STILL. AGAIN.)", 0

AnalystsPerspective BYTE "MY DRIVER PASSES DRIVER VERIFIER! (OR DOES IT…)", 0

ByeByeCoInstallers BYTE "SURPRISE? NEW VERSIONS OF WDF NO LONGER SUPPORTED DOWNLEVEL", 0

.CODE

NESTED_ENTRY TheNTInsiderReadEntireIssue, _TEXT

 save_reg rcx, 8h ; Home RCX

 save_reg rdx, 10h ; Home RDX

 save_reg r8, 18h ; Home R8

 save_reg r9, 20h ; Home R9

 alloc_stack 20h ; Make home space for TheNTInsiderReadSingleArticle

 END_PROLOGUE ; We are done manipulating the stack, so emit the

 ; appropriate unwind stuff

 lea rcx, [PeterPontificates] ; We're about to read the first article

 mov rdx, 4 ; Put page number in RDX. I realize this comment

 ; isn't useful, but I'm supposed to comment every

 ; line...

 call TheNTInsiderReadSingleArticle ; Read the article!

 test eax, eax ; Returns an NTSTATUS, so check SF

 js Exit ; If it's set there's an error and we need to leave

 lea rcx, [NewWaysToConnect] ; Time for the second article!

 mov rdx, 6 ; Do what I did last time

 call TheNTInsiderReadSingleArticle ; Read the next article!

 test eax, eax ; Testin'...

 js Exit ; And jumpin'...

 lea rcx, [TipsForUsingIoTargts] ; Let's read another article!

 mov rdx, 8 ; TODO: Learn to write a MASM loop...

 call TheNTInsiderReadSingleArticle ; Read it!

 test eax, eax ; This treats warnings as errors, but oh well...

 js Exit ; Yes, jump...

 lea rcx, [TodayInDriverSigning] ; Ditto

 mov rdx, 10 ; Wait, why are page numbers 64-bit?

 call TheNTInsiderReadSingleArticle ; Read yet another article

 test eax, eax ; See previous comments

 js Exit ; A test engineer walks into a bar...

 lea rcx, [AnalystsPerspective] ; More articles

 mov rdx, 12 ; With more page numbers

 call TheNTInsiderReadSingleArticle ; Read it!!

 test eax, eax ; Why do we even let this fail?

 js Exit ; Leave if SF != 0...

 lea rcx, [ByeByeCoInstallers] ; Last article

 mov rdx, 14 ; Last page number

 call TheNTInsiderReadSingleArticle ; Read it!

 ; Fall through...

Exit:

 add rsp, 20h ; Return the home space

 ret ; Done!

NESTED_END TheNTInsiderReadEntireIssue, _TEXT

END

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 2
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

Published by
OSR Open Systems Resources, Inc.
105 Route 101A, Suite 19
Amherst, New Hampshire USA 03031
(v) +1.603.595.6500
(f) +1.603.595.6503

http://www.osr.com

Consulting Partners
W. Anthony Mason
Peter G. Viscarola

Executive Editor
Daniel D. Root

Contributing Editors
Scott J. Noone
OSR Associate Staff

Send Stuff To Us:
NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2016 All rights
reserved. No part of this work may be
reproduced or used in any form or by any means
without the written permission of OSR Open
Systems Resources, Inc.

We welcome both comments and unsolicited
manuscripts from our readers. We reserve the
right to edit anything submitted, and publish it at
our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are
the property of their respective owners. “OSR”,
“OSR Online” and the OSR corporate logo are
trademarks or registered trademarks of OSR
Open Systems Resources, Inc.

We really try very hard to be sure that the
information we publish in The NT Insider is
accurate. Sometimes we may screw up. We’ll
appreciate it if you call this to our attention, if
you do it gently.

OSR expressly disclaims any warranty for the
material presented herein. This material is
presented “as is” without warranty of any kind,
either expressed or implied, including, without
limitation, the implied warranties of
merchantability or fitness for a particular
purpose. The entire risk arising from the use of
this material remains with you. OSR’s entire
liability and your exclusive remedy shall not
exceed the price paid for this material. In no
event shall OSR or its suppliers be liable for any
damages whatsoever.

It is the official policy of OSR Open Systems
Resources, Inc. to safeguard and protect as its
own, the confidential and proprietary
information of its clients, partners, and others.
OSR will not knowingly divulge trade secret or
proprietary information of any party without
prior written permission. All information
contained in The NT Insider has been learned or
deduced from public sources...often using a lot of
sweat and sometimes even a good deal of
ingenuity.

OSR is fortunate to have customer and partner
relations that include many of the world’s leading
high-tech organizations. As a result, OSR may
have a material connection with organizations
whose products or services are discussed,
reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way
endorsed by Microsoft Corporation. And we like
it that way, thank you very much.

WINDOWS INTERNALS & SOFTWARE DRIVERS
For SW Engineers, Security Researchers, & Threat Analysts

Next Presentations:

“The instructor is extremely knowledgeable
regarding Windows internals. He has the
communications skills to provide an informative, in
-depth seminar with just the right amount of
entertainment value.”

 - Feedback from an attendee of THIS seminar

Dulles/Sterling, VA
13-17 June

Seattle, WA

12-16 September

Y ou’ve got real commitments and project schedules to worry about. Making a decision to give
up a week of your time to “learn up” is a big step. The value in that learning experience has

many measurements. Here at OSR, it all starts with setting and meeting expectations of our
attendees, and that’s where I come in. My name is Debra Stitt, and I manage the team at OSR
responsible for delivering a seminar experience that truly exceeds expectations.

What I love best about my position is the opportunity to help
people every day. OSR may be well-known in the industry, but
my team communicates with prospective attendees from all
over the world, of varying technical backgrounds, and differing
needs and goals. Determining “fit” is what it’s all about for us,
and that takes time and dedication. We’re happy to spend the
time necessary to do that to help you feel comfortable in a
decision to choose OSR. Anything less is a disservice to you, and
only hurts us both in the end.

Want to start a dialogue about a specific training need you
have? Let’s get started. Drop us a note with your interest and
questions to seminars@osr.com.

http://www.osr.com/seminars/software-drivers/
mailto:seminars@osr.com

Page 3
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

J ust in case you’re not already following us on Twitter, Facebook, LinkedIn, or via our own “osrhints” distribution list, below are
a few of the more recent contributions that are getting attention in the Windows driver development community:

TH1, RS1, 1511, 14322—Happy Anniversary?
If you’re having trouble following the lingo, code names, version numbers, and
build numbers of the recent Windows releases you’re not alone.
http://www.osr.com/blog/2016/05/13/th1-rs1-1511-14332-happy-anniversary/

Secrets of Using Win10 IoT Core on the RPI3 (and staying sane)
Let us save you some annoyance...
http://www.osr.com/blog/2016/04/15/secrets-using-win10-on-the-rpi-3/

Legacy File System Filters Blocked in Build 1607
THIS one shouldn’t be a surprise, but undoubtedly someone will get bit...
http://www.osr.com/blog/2016/03/31/legacy-file-system-filters-blocked-build-1607/

More PI to Love...And Windows Supports It!
RPI3...
http://www.osr.com/blog/2016/02/29/pi-love-windows-supports/

Turning DbgPrint Statements into WPP Tracing
With inspiration from Chaucer...
http://www.osr.com/blog/2016/02/26/turning-dbgprint-into-wpp-tracing/

!pool Broken for Windows 10 Build 10586 Targets
Another public service announcement from OSR.
http://www.osr.com/blog/2016/01/14/pool-broken-windows-10-build-10586-targets/

Our Recommendations for Driver Signing—Windows 10 and Otherwise
And don’t forget to read the related article in THIS newsletter
http://www.osr.com/blog/2015/12/29/recommendations-driver-signing-windows-10-otherwise/

Checked Kernel and HAL back in the WDK!
An oversight resolved...phew!
http://www.osr.com/blog/2015/12/14/checked-kernel-hal-back-wdk/

Sources/Dirs Converter? Gone from the Win10 V1511 WDK
Another one of those surprises that you’d hope for a “heads up” on...
http://www.osr.com/blog/2015/12/08/sources-dirs-coverter-gone/

Oops! VS 2015 Update 1 Breaks SDV
Ok, it HAS been fixed in Update 2...
http://www.osr.com/blog/2015/12/02/vs-2015-update-1-sdv/

WdfWaitLockAcquire and Code Analysis: When SAL Goes Wrong
We live with them, but some shortcomings are worth pointing out.
http://www.osr.com/blog/2015/12/02/wdfwaitlockacquire-code-analysis-sal-goes-wrong/

Follow us!

Become More
Knowledgeable… Instantly!

We email our friends when we’ve got some-
thing interesting to say. Join the list!

Send a blank email to
join-osrhints@lists.osr.com and we’ll add you
to the list. We don’t have THAT much to say.
You’ll probably get one or two emails a month.

http://www.osr.com/blog/2016/05/13/th1-rs1-1511-14332-happy-anniversary/
http://www.osr.com/blog/2016/04/15/secrets-using-win10-on-the-rpi-3/
http://www.osr.com/blog/2016/03/31/legacy-file-system-filters-blocked-build-1607/
http://www.osr.com/blog/2016/02/29/pi-love-windows-supports/
http://www.osr.com/blog/2016/02/26/turning-dbgprint-into-wpp-tracing/
http://www.osr.com/blog/2016/01/14/pool-broken-windows-10-build-10586-targets/
http://www.osr.com/blog/2015/12/29/recommendations-driver-signing-windows-10-otherwise/
http://www.osr.com/blog/2015/12/14/checked-kernel-hal-back-wdk/
http://www.osr.com/blog/2015/12/08/sources-dirs-coverter-gone/
http://www.osr.com/blog/2015/12/02/vs-2015-update-1-sdv/
http://www.osr.com/blog/2015/12/02/wdfwaitlockacquire-code-analysis-sal-goes-wrong/
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
mailto:join-osrhints@lists.osr.com?subject=SIgn%20me%20up!
mailto:join-osrhints@lists.osr.com?subject=SIgn%20me%20up!

Page 4
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

I ’ve been writing Peter Pontificates since 1996, when we

made The NT Insider available (for free!) to anybody who

was interested in the field of Windows System Software.

Some of my Pontifications are intended to be funny – most of

these weren’t. Some attempt to predict the future – most of

these work out wrong. A fair number comment on the state

of the industry. When you look back on them years later, a

lot of these Pontifications show the swings of the pendulum

over time: Microsoft loves driver developers, Microsoft

ignores driver developers, Microsoft sort of loves driver

developers, Microsoft loves driver developers again.

What’s really weird is that some situations in which our

industry finds itself and on which I’ve pontificated over the years have not changed a bit. Back in 2002, I bemoaned the state of

Computer Science education in the US. 2002. 14 years ago. George W. Bush was president of the United States (and I

Pontificated at the time that it could never, ever, get worse… look who’s running now!). Gerhard Schröder was German

Chancellor. You could take a plane without having your lower intestinal tract inspected. Popular music was just starting to go

downhill. Windows XP had shipped (but not the 64-bit version), and WS03 hadn’t shipped yet.

It’s against this backdrop that I wrote about how CS education – at least here in the States – was in dire need of fixing. I didn’t

think it could get worse. But, guess what? It has. Not only has it gotten worse, it’s gotten much, much, worse. Recent CS grads

now rarely even learn C. It’s ridiculous. We see the evidence of this, every single day, in the posts on NTDEV. People write in with

questions that demonstrate beyond a reasonable doubt that they do not know C, do not understand devices, and do not have any

clue whatsoever about what an operating system is, does, or why you would want one.

Here, with modification, is exactly what I wrote in 2002:

I am totally depressed and disgusted by the state of computer science education here in the States. Once upon a time, it was

impossible to graduate with a degree in computer science without knowing something about operating systems. In most “good”

schools, you were required to take a minimum of two operating system classes, a compiler theory class, and a variety of languages

including at least one assembler language.

These requirements ensured that new CS graduates were at least familiar with the fundamental principles of computer science

down to the hardware level. You simply couldn’t escape learning the basics of memory management, interrupts, ports, and

registers. And every CS major had to be exposed to the principals of recursion, concurrency, and multi-threading. Learning about

these topics provided you the basic grounding necessary to be a competent software engineer, regardless of the type of coding

you eventually decided to pursue in your professional career.

Of course, even in those days not everybody was up to the challenge. If you wanted to work in the computer biz but basically not

learn anything about computers, you could choose to major in something like “information technology” instead of computer

science. Within this discipline you could learn really important things like how to write command procedures, execute SQL

queries, and maybe even do backups. Hey, engineering isn’t for everybody, right? And somebody’s got to run those backups. At

least nobody pretended these people were competent engineers.

What has me so seriously nauseated is that these days you can graduate from a reasonably well-respected university in the States

and never learn an assembly language. Even worse, in many schools you can graduate with a CS degree without ever having taken

an operating system theory class. Really. I am not kidding.

(CONTINUED ON PAGE 5)

Page 5
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

I encounter recent CS grads all the time that have absolutely no idea – I mean none, zero, zip, nada – about how a virtual address is

translated to a physical address. It might as well be by magic. Be clear about what I’m saying here: I’m not saying they don’t know

how virtual memory works in detail on some specific processor. I’m saying they don’t understand the concept of virtual memory at

all. You say “page fault” and they look back at you with a blank stare, as if you were reciting one of the Vedas. As for knowing the

differences between running in kernel mode and user mode… forget about it. Interrupts? Ha! Memory mapped I/O? No way.

Port space, device registers? No clue.

What’s even scarier (like it could get scarier) is that these folks are equally ignorant of important fundamental concepts that can

apply in user mode as well as in kernel mode, such as concurrency and multi-threading. “Multithreading…. That’s something taken

care of by the run-time library, isn’t it?” Well, yes it is indeed! Here’s your diploma. Please proceed directly to writing code in Java

or TCL or something. When writing code in C#, please select the “threading model” of your choice from the list of radio buttons

shown. Just whatever you do, stay way the f**k away from my kernel, OK?

I don’t blame students for this mess. Hey, they don’t know they’re stupid. Students rely on the CS department to tell them what

they need to study. And when universities are graduating kids who don’t know that the words “register” and “port” have meanings

other than those associated with food stamps and boats (respectively) then the schools are failing both their students and the

industry. And up in Redmond, they actually wonder why so many drivers crash…

Is this problem peculiar to the States? I’m not sure, but there’s evidence to suspect the situation is not nearly as hopeless

everywhere. Have you noticed the increasing number of non-US trained engineers in the system software business? When was

(CONTINUED FROM PAGE 4)

(CONTINUED ON PAGE 27)

KERNEL DEBUGGING & CRASH ANALYSIS SEMINAR
I Tried !analyze-v...Now What?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider attendance
at OSR’s Kernel Debugging & Crash Analysis seminar. Here’s what a recent OSR student said
about his experience at this seminar:

“The instructor exhibited a very comprehensive knowledge of the
material, added with an incredible ease in explaining a very complex
subject. I highly recommend this course.”

 - Feedback from an attendee of THIS seminar

For more information, visit www.osr.com/seminars/kernel-
debugging/, or contact an OSR seminar coordinator at
seminars@osr.com

http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
mailto:seminars@osr.com

Page 6
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

W indows 8 quietly saw the introduction of many new Windows OS-level features. One of the most notable was support for

devices connected via a Simple Peripheral Bus (SPB). SPBs are low-cost, low-power, low-speed buses that are most often

used for connecting relatively simple peripherals such as sensors. Examples of SPB devices supported in Windows include I2C and

SPI. Prior to Windows 8, these types of buses were restricted to use by the BIOS. But starting in Windows 8, support for these

devices went mainstream.

There are several things that are interesting about SPB buses and about writing a driver for a device that’s connected via an SPB

bus. This article explores some of these topics.

SPB Buses – Topology and Enumeration
Like the SCSI, SATA, and USB buses, SPBs are protocol-based buses. That means there’s a Controller that’s responsible for getting

requests on and off the bus using the appropriate protocol and according to the bus’s specific rules. Devices that connect to

protocol-based buses are called Client Devices.

One point about these buses that causes some confusion is the

way devices on an SPB bus are discovered and enumerated.

SPB buses are not dynamically enumerable. That means that

there’s no way to discover which Client Devices, if any, are

connected to a given SPB bus at run time. So, how do Client

Devices on an SPB bus get discovered as part of the Windows

PnP process? The answer is simple: The description of which

Client Devices are attached to which specific SPB bus is

supplied statically, in a table, as part of the ACPI BIOS. As a

result, the Bus Driver that enumerates SPB Client Devices is

ACPI, and not the SPB Controller Driver. Because the SPB

Controller Driver is a standard backplane-bus type device it’s

enumerated by the PCI bus driver. You can see these points in

Figures 2 and 3 (P.7).

The ACPI table that contains this description is called the Differentiated System Descriptor Table or DSDT for short. The DSDT is

usually provided in ROM and supplied by the system integrator, typically the OEM who builds the computer system. This works

well because SPB Client Devices are usually permanently integrated into a system platform; That is, they’re almost always soldered

directly onto the system’s main board. In the rare case that an SPB Client Device can be dynamically attached to a system (such as

a specialized detachable keyboard that’s connected via an I2C bus), the information about the Client Device is still provided to the

ACPI BIOS and the device will be enumerated by ACPI.

(CONTINUED ON PAGE 7)

OSR CUSTOM SOFTWARE DEVELOPMENT
I Dunno...These Other Guys are Cheaper...Why Don’t We Use Them?

Why? We’ll tell you why. Because you can’t afford to hire an inexperienced consultant or contract
programming house, that’s why. The money you think you’ll save in hiring inexpensive help by-the-hour
will disappear once you realize this trial and error method of development has turned your time and
materials project into a lengthy “mopping up” exercise...long after your “inexpensive” programming team
is gone.

You deserve (and should demand) definitive expertise. You shouldn't pay for attempts to develop your
solution. What you need is a fixed-price solution with guaranteed results. Contact the OSR Sales team
at sales@osr.com to discuss your next project.

Figure 1— Controller, Bus and 2 Client Devices

http://www.osr.com/custom-development/
mailto:sales@osr.com

Page 7
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

Common Uses
Windows supports both the SPI bus and the I2C bus using the SPB model.

The I2C bus uses only 2 wires (plus power) for communication, making it

an extremely simple interface. The SPI bus uses 4 wires (plus power).

While initially these buses were primarily of interest to very small

systems, such as smart phones and tablets, they have become very

popular for interfacing “simple” devices on a wide variety of systems. In

fact, Windows now includes I2C as a standard method for connecting HID

devices, and it is very popular among touchpad vendors. The Surface Pro

4 has more than a half dozen devices, ranging from cameras to power

meters to a variety of HID devices that interface via the I2C bus. You can

see some of these devices in Figure 2 (which was captured on a Surface

Pro 4).

Writing SPB Drivers
As you can probably guess, there are two very different types of drivers

that one could possibly write for SPB devices. There are drivers for the

SPB Controller Device and drivers for SPB Client Devices.

Drivers for both types of SPB devices have special support in WDF that’s

provided by the SPB Class Extensions (SPBCx). SPBCx provides a

standardized infrastructure that makes writing drivers for both categories

of SPB devices much less difficult than it would be otherwise. Among

other things, the SPBCx defines a set of I/O requests that a driver for a

Client Device can send to the driver for a Controller Device to access their

device. These standard I/O requests include specific rules for how read

and write operations are processed by the driver for the Controller Device, as well as a standardized set of SPB-specific IOCTLs.

Aside from supporting the SPBCx, writing a driver for an SPB Controller Device is mostly like writing any driver for a device on a

backplane architecture bus like PCI or PCIe. These drivers claim their hardware resources (such as registers, perhaps a DMA

(CONTINUED FROM PAGE 6)

(CONTINUED ON PAGE 22)

Figure 2— Resources by Connection: Note the I2C
Controller and “Camera Front”

Figure 3 — Hardware IDs
for the Controller Device

and Client Device
(Camera) - Note the Bus
Driver Names on Each

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/I%C2%B2C

Page 8
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

I n a recent article, I described three of the most common WDF errors that we, here at OSR, see in released drivers. One type of
error that I described is the use, or rather misuse, of I/O Targets. The root cause of the problems in this category is that WDF

allows you to use architecturally invalid combinations of activities involving I/O Targets without reporting an error. As a result, you
can code-up your driver, test it, and even ship it… only to have your driver break later on when it encounters a slight change in its
runtime environment.

In this article, I’ll provide some guidelines for using WDF I/O Targets that – if you follow them – will ensure that you stay out of
trouble with your use of WdfRequestSend and I/O Targets.

Background
In case you’re not familiar with I/O Targets and WdfRequestSend, I’ll give you a brief introduction. An I/O Target is a location to
which you can send WDF Requests. There are two types of I/O Targets that are interesting in terms of our discussion: Local I/O
Targets and Remote I/O Targets. The third type of I/O Target, named “special” I/O Targets, are related to USB (only) and are not
particularly relevant to this article.

If your driver wants to send a Request to “the next device down” in its Device Stack, it retrieves the handle to its Local I/O Target
by calling WdfDeviceGetIoTarget. If your driver wants to send a Request to a device in the system other than the device that’s
immediately below it in the Device Stack, it needs the handle to a Remote I/O Target that represents that device. To get this
handle, the driver creates an empty I/O Target object using the function WdfIoTargetCreate and then opens that newly created I/O
Target object using the function WdfIoTargetOpen. The target device can be described to the WdfIoTargetOpen function either by
name or by providing a pointer to that device’s existing native WDM Device Object.

When you send a Request to an I/O Target, you must supply the I/O parameters that will be sent with the Request to that I/O
Target. These parameters include the I/O function code (Read, Write, DeviceControl, InternalDeviceControl), a description of the
associated data buffer(s), and the offset on the device at which the operation should start (like, the offset from which to start
reading or writing). The way you supply these parameters is by “formatting” the Request prior to sending it with WdfRequestSend.
This format step is almost always an explicit step in setting up the Request to be sent, but in some very specific cases the
formatting can be done implicitly. We’ll talk about these cases when we discuss The Rules below.

That’s a pretty quick description. If you need to know more, you should take our WDF seminar. Or search the web.

The Key to Understanding: Realizing Local and Remote Targets Are Very Different
The key thing to realize about using I/O Targets is that the operations you can perform, and how you handle the Request that
you’re going to send, is dependent on the type of I/O Target you’re using. Once you understand the steps and allowed options for
sending to a Local I/O Target and those for sending to a Remote I/O Target are different, you’re on your way to writing safe, stable,
correct code that will continue working even outside your test environment and into WDF versions in the future.

In the following section I’ll describe some of the basic rules. In this article, I’m going to stick to the most common design patterns
and the major rules. As a result, I’m going to consciously ignore some of the less-used design patterns and some of the things
that are possible but are rarely done. So, if you’re an experienced WDF developer or you’re a member of the WDF development

(CONTINUED ON PAGE 9)

DESIGN AND CODE REVIEWS
You’ve Written Code — Did You Miss Anything??

Whether you’re a new Windows driver dev or you’ve written dozens of drivers before, it’s always
hard to be sure you haven’t missed something. Windows changes, WDF changes, security
issues emerge. Best practices are a moving target.

Let OSR help! Our engineering team is 100% dedicated to Windows internals and driver
development. Let us be the expert, second pair of eyes on your project… ensure it’s done
right!

https://www.osr.com/nt-insider/2015-issue3/common-kmdf-errors/
http://www.osr.com/code-reviews/

Page 9
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

team, don’t get all upset that I haven’t described your favorite special case. The rules I describe here err on the side of being
conservative. As a result, I can confidently say that if you stick to these rules below, you’ll never go wrong when using I/O Targets.

The Rules for Sending to a Remote I/O Target
Recall that you can open a Remote I/O Target by name or by providing a pointer to an existing native WDM Device Object.

The primary rule is: If you’re sending a Request to a
Remote I/O Target, you must format the Request for
that specific I/O Target before sending it. That means
you must call one of the formatting functions that
starts with WdfIoTarget, such as WdfIoTarget
FormatRequestForXxxx (where Xxxx is Read, Write,
Ioctl, and InternalIoctl). There is no other way that’s
legal. Note, specifically, that it is not correct (or even
supported) to call WdfRequestFormatRequestUsing
CurrentType before you send a Request to a Remote
I/O Target. Judging by a lot of the code I’ve read, this
will come as a surprise to a lot of people. You have to
use a method that’s specific to the I/O Target to which
you’ll be sending the Request. Hence, the method you
use must start with WdfIoTarget.

When you send the Request, you may send the
Request to the Remote I/O Target either
Synchronously or Asynchronously with a callback.
There are some very narrow, very limited cases where
it’s possible to send a Request to a Remote I/O Target
using _SEND_AND_FORGET but these cases are so
limited that they’re not worth discussing. So, forget
_SEND_AND_FORGET for Remote I/O Targets. Just
remember that if you’re sending a Request to a
Remote I/O Target, you must send it either
Synchronously or Asynchronously with a callback.

Pretty simple, right? Right: Format the Request using
WdfIoTargetFormatRequestForXxxx, specify a
WDF_REQUEST_SEND_OPTIONS structure specifying
either synchronous processing or asynchronous
processing with a callback, call WdfRequestSend, and
you’re done. You can see this in code in Figure 1.

Note that you can use this pattern for any WDF

Request that you’re sending to a Remote I/O Target. In other words, you can use it to send Requests that you receive from a
Queue (so called Queue Presented Requests) or Requests that you create in your driver by calling WdfRequestCreate.

Oh, one more thing: If you specify synchronous processing, be absolutely sure you have specified an ExecutionLevel constraint on
your WDFDEVICE or WDFQUEUE as WdfExecutionLevelPassive. This is the only time you can use synchronous processing.
The Rules for Sending to a Local I/O Target

The first thing to understand about sending Requests to Local I/O Targets is that you can always use the same pattern that you use
for sending to Remote I/O Targets. That is, you can format the Request using WdfIoTargetFormatRequestForXxxx and then send

(CONTINUED FROM PAGE 8)

(CONTINUED ON PAGE 20)

status = WdfRequestRetrieveOutputMemory(Request, &outputMemory);

if (!NT_SUCCESS(status)) {
 WdfRequestComplete(Request, status);
 return;
}

//
// Step 1: Format with reference to the specific I/O Target to which
// we'll be sending the Request.
//
status = WdfIoTargetFormatRequestForIoctl(devContext->Target,
 Request,
 IoControlCode,
 NULL,
 NULL,
 outputMemory,
 NULL);

if (!NT_SUCCESS(status)) {
 WdfRequestComplete(Request, status);
 return;
}

//
// Set a completion callback... we'll be sending the Request async.
//
WdfRequestSetCompletionRoutine(Request,
 MyDriverRequestCompletionRoutine,
 NULL);

//
// Step 2: Send the Request to the Remote I/O Target
//
ret = WdfRequestSend(Request,
 devContext->Target,
 WDF_NO_SEND_OPTIONS);

if (ret == FALSE) {
 status = WdfRequestGetStatus (Request);
 WdfRequestComplete(Request, status);
}

FIGURE 1 – Formatting a Request for Remote I/O Target

Page 10
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

I f you've been following the events of the past couple of years regarding driver signing, you'll know that there's been a lot of stuff
that's unclear. For those of you who don't live and breathe Windows driver policies, let me summarize for you: Prior to the

introduction of Win10 (TH1... can't remember which version, code name, or build of Windows is which? Us either... Check out this
handy blog post), Microsoft announced that Windows 10 would not allow installation of drivers unless the driver was signed via
the SysDev portal (that is, signed by Microsoft, though this will not require the driver to pass the HLK tests). With the help of
Microsoft PM James Murray, we tried to flesh out the details of this policy. Throughout the Windows 10 release cycle, this policy
changed. The current policy is murky, even with the clarifying statements that have been issued, but seems to suggest that in
Win10 TH1 and TH2, you can still install drivers using the long-standing, traditional method of cross-signing. This is supported by
lots of real-world experience. The driver development community breathed a collective sigh of relief.

Fast forward to recent times. The pending release of Windows 10 Anniversary Edition (code name Redstone 1, RS1 for short)
scheduled for release in July of 2016, once again raises the question of "will the long-standing driver signing policy change"?
Community experience as described in this NTDEV thread seems to indicate that the requirement that newly installed kernel-mode
drivers be signed by the SysDev portal will indeed start to be enforced in RS1. There are also reports that this will only be the case
if Secure Boot is enabled on the platform. Various people have tested this.

But, for you dear reader, I decided to test things myself. My goal was to be able to make some definitive statements about what
was going on. The results were not what I expected.

Can You Install a Cross-Signed Driver on RS1?
Yes.
I started my testing on a spare Surface Pro 1 we had
kicking around. Because the Surface Pro 1 isn’t super
-happy about booting random USB drives (no, I don’t
know why… but I don’t know anybody who’s
managed to get it to work), I reimaged the system
using the standard Windows 8 restore disk. I then
downloaded Build 14295 from the Windows Insider
web site and attempted a clean-install from the ISO
(running the install from the Windows 8 system). I
then waited for the “Fast Ring” to push me Build
14332, which dates from 22 April 2016. Note: Secure
Boot was enabled on the system. The debugger was
not attached, and kernel debugging was not enabled.
Test Signing was not enabled. We're talking a
standard system install of a "Fast Ring" system here.
Nothing cute.

Just to make sure things were sane, I started by trying
to install my software-only driver. I didn't sign
anything. The results were as expected, and shown in
Figure 1. The driver wouldn't install.

(CONTINUED ON PAGE 11)

THE NT INSIDER - Hey...Get Your Own!

Just send a blank email to join-ntinsider@lists.osr.com
— and you’ll get an email whenever we release a new
issue of The NT Insider.

Figure 1 — No Signature = No Install. Just What You'd Expect.

https://www.osr.com/blog/2016/05/13/th1-rs1-1511-14332-happy-anniversary/
https://www.osr.com/blog/2016/05/13/th1-rs1-1511-14332-happy-anniversary/
https://www.osr.com/blog/2015/07/24/questions-answers-windows-10-driver-signing/
https://www.osr.com/blog/2015/12/29/recommendations-driver-signing-windows-10-otherwise/
http://answers.microsoft.com/en-us/insider/forum/insider_wintp-insider_install/windows-10-anniversary-edition-whats-new-and-when/fee284cb-233d-4049-84e3-0b24f928eeda?auth=1
https://www.osronline.com/showthread.cfm?link=274801
https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewadvanced
https://www.microsoft.com/en-us/software-download/windowsinsiderpreviewadvanced
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
mailto:join-ntinsider@lists.osr.com

Page 11
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

The setupapi.dev.log file (Figure 2) had the
usual error messages stating "Driver package
catalog file does not contain a signature, and
Code Integrity is enforced" and "Driver
package failed signature validation" -- All good
so far, right?

Then, I signed the driver executable and
catalog files in the “traditional” way using the
appropriate cross-signing certificate with one
of OSR's Release Signing certificates (for the
record, this is a Verisign issued Class 3 Code
Signing certificate issued in March of 2016
using SHA-256, but without Extended
Validation). I copied the signed package to the
RS1 system and attempted the install. I was
greeted with the familiar message box shown
in Figure 3. And the installation worked
perfectly (Figure 4).

Whoa! Wasn’t this supposed to fail? Isn’t this
the whole point we’re trying to demonstrate?
Isn’t RS1 supposed to require newly installed
drivers to be signed by Microsoft? Hmmm…
well, in this test, not so much.

(CONTINUED FROM PAGE 10)

(CONTINUED ON PAGE 16)

Figure 3 — Yes, I want to install this "device software"! But...

Figure 4 — Signed and Cross Signed; Installs Just Fine on 14332, Thank You.

Figure 2 — No, You Can't Install an Unsigned Driver on 64-bit Windows. Duh!

DID YOU KNOW?

Most of our attendees have tried learning on the job in a variety of ways. Why go it
alone? Attend an OSR Seminar and you can learn from our 20+ years of Windows
internals and kernel driver development experience. Hear what others say about our

seminars at www.osr.com/testimonials

http://www.osr.com/seminars/
http://www.osr.com/testimonials/

Page 12
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

A fundamental complexity in Windows kernel mode development is that the execution environment comes from a different era
in software development. Basically, the idea is this: if you’re writing kernel mode code, then you must know what you’re

doing. If you know what you’re doing, then we don’t need to validate your function parameters and therefore we can shave off
some CPU cycles. We also don’t need to bother validating the execution environment at all because, you know, everyone knows
what they’re doing.

If you don’t know what you’re doing, then you’re stupid. If you don’t pass valid arguments, you get what you deserve. If you don’t
understand the rules of the execution environment, then kernel mode software development must be too hard for you.

The problem with all of this of course is that this approach doesn’t really scale. Without proper validation, you can easily crash the
system by calling a function with an invalid argument. Even worse, the system might not crash but instead subtly corrupt an
internal structure or return an invalid result. Also, you need great documentation for people to, you know, actually learn what the
rules are for the environment.

Documentation issues aside, Windows 2000 introduced Runtime Driver Verifier to address the issue of insufficient runtime
validation of arguments and execution environment. This allows us to put the OS into a special mode where the drivers aren ’t
trusted and we can gain the benefits of OS level validation. With each iteration of Windows, Verifier has become more and more
powerful and maintains its title as the single greatest gift that the Universe has bestowed upon driver developers. Passing Verifier
is the minimum requirement for professional software development in the Windows operating system. If you’re not running your
driver under Verifier, you have failed. Seriously.

I was recently talking about Verifier with an IT administrator for a large organization. He mentioned that he had a lot of systems
crashing and went around enabling Verifier for various third party drivers on the systems hoping to find the culprit. The systems
started crashing immediately and directly pointing to a bug in a third party driver. After bringing the crash up with the vendor,
their response was, “shut Verifier off, we don’t test with that.” This is so wrong that I’m close to publicly shaming the company, I’m
just not sure what they’re thinking. My suggestion to the IT admin was to beat the company harder and, if they won’t listen, find a
replacement product.

“Fools!” you say, “I use Verifier all the time. I am safe!” However, you might be missing something critical in your testing: just
enabling Verifier for your driver only is hardly ever sufficient. Do you have a KMDF driver? A FltMgr filter? An NDIS driver? StorPort
miniport? For any of these, you really need to enable Verifier on both your driver and the wrapper library!

(CONTINUED ON PAGE 13)

WINDOWS FILE SYSTEM TRAINING

Next Presentation:

File system development for Windows is complex and it isn’t getting any easier. Filtering
file systems is more common, but is frankly MORE complex - let us help!

I needed to learn as much as I could, and this was the right choice. I
have a stack of books, but a classroom experience was much more
direct and an efficient way to learn the material. I have already felt the
value of this seminar in my day-to-day work.

 - Feedback from an attendee of THIS seminar

Vancouver, BC
7-10 November

http://www.osr.com/seminars/file-systems/

Page 13
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

The problem is that Verifier is validating calls into the operating system. For the above drivers, your driver isn’t calling into the
operating system, the library is. For example, if you’re KMDF driver calls WdfDeviceCreate, it’s the Framework that calls
ExAllocatePool to allocate your WDFDEVICE and your Device Context. The buffers allocated in this case won’t be subject to
validation by Driver Verifier unless you have explicitly enabled Driver Verifier for the Framework. If you only enable Driver Verifier
for your driver, the only pool validation that you get will be for calls that your driver makes directly to ExAllocatePool (Figure 1).

So, the rule is, when you enable Driver Verifier for your driver, always also enable Driver Verifier for the wrapper/library that your
driver uses (Table 1).

Another option that people frequently miss: you can also enable Verifier on the NTOS Kernel image! This means that allocations
made by the OS itself (e.g. File Objects) will also be subject to Verifier’s checking. This results in a unique form of parameter
validation that you might not catch otherwise.

Ultimately, the lesson is that more Verifier is a good thing so
make sure you enable it early, often, and for any driver that
your driver touches. Of course, the downside to Verifier is
that the system behaves differently when Verifier is enabled,
thus you’re not actually testing the real customer
environment. So, unless you’re going to make all your
customers turn on Verifier as part of install, make sure you
also test without Verifier enabled as part of your QA. See the
sidebar, Still Want More Validation… below for another
helpful tip.

(CONTINUED FROM PAGE 12)

I f you’re writing a WDF driver, you definitely want to also enable WDF Verifier. See the topic Using KMDF Verifier in the WDK

Documentation (Google for it when the provided link breaks, as it will).

Whether you’re writing a WDF driver or not, there’s still a lot of additional checking of which you can take advantage. For

example, at some point you should always test with the checked build of Windows, the checked build of any wrapper/library

components used by your driver, and the checked build of any driver(s) with which your driver interacts. The checked OS image

and HAL are distributed as part of the WDK. You can find the documentation under Downloading a Checked Build of Windows in

MSDN. In addition to these, download a complete checked build of Windows (assuming you can find it; they’re getting harder and

harder to find with each OS release). You can either choose to install the complete checked build, or you can extract (with some

work) just the checked images for the wrapper/library that your driver uses, plus the checked executables for any drivers with

which your driver interacts. For example, if you’re writing a file system filter driver, you’ll want to use the checked build of Filter

Manager (fltMgr.sys) plus the checked builds of the file systems that you filter. Our experience is that this can be very helpful in

identifying potential problems.

Figure 1 — No Special Pool!

You Write This Type of
Driver

Enable Verifier on Your Driver,
AND ALSO

KMDF Wdf01000.sys

NDIS ndis.SYS

File System Filter fltMgr.SYS

StorPort Storport.sys

Table 1 — Enable Verifier on your Driver's Executable and
the Wrapper

Follow us!

https://msdn.microsoft.com/en-us/windows/hardware/drivers/wdf/using-kmdf-verifier
https://msdn.microsoft.com/en-us/library/windows/hardware/ff549603(v=vs.85).aspx
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 14
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

WE KNOW WHAT WE KNOW

We are not experts in everything. We’re not even experts in everything to do with Windows.
But we think there are a few things that we do pretty darn well. We understand how the
Windows OS works. We understand devices, drivers, and file systems on Windows. We’re
pretty proud of what we know about the Windows storage subsystem.

What makes us unique is that we can explain these things to your team, provide you new
insight, and if you’re undertaking a Windows system software project, help you understand the
full range of your options. AND we also write kick-ass kernel-mode Windows code. Really. We
do.

Why not fire-off an email and find out how we can help. If we can’t help you, we’ll tell you that,
too.

Contact: sales@osr.com

M aybe you’re like me, and you missed the memo that must have been circulated two years ago. But I just learned, via a
thread on NTDEV started by long-time driver developer Ed Dekker that KMDF versions 1.13, 1.15, and 1.17 cannot be used

on older versions of Windows.

Throughout the history of WDF, devs have had the option of writing drivers to whichever version of the WDF Framework that they
chose. They could then ship their driver along with that version of the Framework packaged in a “CoInstaller DLL.” If the version
of WDF used by the driver was newer than the version that was available on the system on which the driver was being installed,
the CoInstaller would update the version on the system.

What was nice about this is that it would allow a WDF driver to use certain features that were available in a newer version of the
Framework even on older versions of Windows. What was bad about it is that (a) Updating the version of WDF required a reboot,
and (b) the system on which the driver was being installed had to support co-installers. Starting with Windows 8, not every system
that runs Windows supports installing drivers using co-installers (think, IoT Core for one example).

However, as community leader Tim Roberts points out in the previously referenced NTDEV thread, there’s a table in MSDN that
very clearly notes that:

 KMDF V1.13, which was released on Windows 8.1, will only run on Windows 8.1 or later;

 KMDF V1.15, which was released on Windows 10 (TH1), will only run on Windows 10 or later;

 KMDF V1.17, which was released on Windows 10 (TH2), will only run on Windows 10 TH2 or later.

Wait! Don’t go nuts. You can still go UP level without any problem. So, for example, you can write your driver using KMDF V1.11
and install it without incident on Windows 8.1 on which V1.13 is installed. This is, of course, what’s really important. The ability to
go down-level was always merely a convenience.

And if you want to look at this more from the “glass half full” perspective, the good news is that if you target your driver to
Windows 8.1 or later you don’t have to ship-around the co-installer in your driver package anymore.

So, given that at least one person here at OSR is writing a WDF driver every day of every week, why didn ’t we notice this change
until Mr. Dekker happened to ask his question on NTDEV? Well, except for the architectural concept, it’s not clear how much this
matters in the real world. In practice, we’ve built drivers that target every reasonably old OS that KMDF supports (defined as

(CONTINUED ON PAGE 15)

mailto:sales@osr.com
http://www.osronline.com/ShowThread.cfm?link=276164
http://www.osronline.com/ShowThread.cfm?link=276164
https://msdn.microsoft.com/en-us/windows/hardware/drivers/wdf/kmdf-version-history

Page 15
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

I TRIED !ANALYZE-V...NOW WHAT?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider
attendance at OSR’s Kernel Debugging & Crash Analysis seminar.

Windows XP and later) and used KMDF V1.11 with a co-installer, or else we’ve built drivers that target Windows 10 or later and
used KMDF V1.15 without a co-installer.

Not to mention, as Mr. Roberts so succinctly put it in that same NTDEV thread:

I haven't seen anything in KMDF beyond 1.11 that compels me to switch.

Yeah. There’s that, too.

So now you know! Truth be told, I’m kinda happy to get rid of those co-installers anyways.

(CONTINUED FROM PAGE 14)

Follow us!

ALREADY KNOW WDF? BOOST YOUR KNOWLEDGE

Read What Our Students Have to Say About
Writing WDF Drivers II: Advanced Implementation Techniques

It was great how the class focused on real problems and applications. I
learned things that are applicable to my company's drivers that I never
would have been able to piece together with just WDK documentation.

A very dense and invaluable way for getting introduced to advanced
windows driver development. A must take class for anyone designing

solutions!

 - Feedback from an attendee of THIS seminar

Amherst, NH (OSR) 11-14 October

Next Presentation:

http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osr.com/seminars/advanced-wdf/

Page 16
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

After doing this test, I remembered that there was some speculation that if the system was an upgrade from a previous version, it
would load and install drivers that were signed in the “traditional” way. To test this out, I downloaded the latest Insider Program
ISO (build 332) and installed it to a brand-new VMware virtual machine. That should fail, right? A new install of the latest RS1
build? See Figure 5.

Sigh. It still works. So, let’s summarize:

 You can’t install an unsigned x64 driver. Duh.

 Upgraded RS1, Build 14332: Traditionally signed (and cross-signed) driver installs fine.

 New install of RS1, Build 14332: Traditionally signed (and cross-signed) driver installs fine.

So… at least based on tests of the latest Insider builds available, no unique signing procedure is necessary to get drivers to load on
Windows 10 Anniversary Update.

However, according to that same thread on NTDEV thread that I referred to previously, the requirement may kick-in if the system
is both newly installed and booted in “Secure Boot” mode. Unfortunately, we weren’t able to try this. Why? Because we couldn’t
find a system at OSR that was both (a) capable of booting in Secure Boot Mode, and (b) able to be clean-installed. (And here’s an
interesting digression: Have you ever tried to do a clean install on a Surface Pro 1? No? Let me just say that you should give it try
sometime when you have a few days to waste. In short, it’s not happening no matter what you do. Upgrade? Yes. Actual clean
install? No. It’s maddening. Why can’t the damn system boot a USB drive with the install kit on it, like a normal system? Arrrgh!)

(CONTINUED FROM PAGE 11)

(CONTINUED ON PAGE 17)

I TRIED !ANALYZE-V...NOW WHAT?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider
attendance at OSR’s Kernel Debugging & Crash Analysis seminar.

Figure 5 — Install of "Traditionally" Signed Drivers on New RS1 System. Yup, Still Works.

https://www.osronline.com/showthread.cfm?link=274801
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/

Page 17
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

Does Attestation Signing Work? Is it a
PITA?
While we were wasting our time, we did
have one more thing that we wanted to
try. We wanted to walk through the
Attestation Signing process to see if it’s
as easy as it should be… and to see on
which systems you could install
Attestation Signed drivers.

The Attestation Signing process is
reasonably well described on MSDN, in a
Dev Center post by Don Marshall. We’ll
walk you through the process and try to
make it a bit easier.

Before you can upload your drivers to
the Microsoft SysDev portal for
Attestation Signing, you have to take
your driver package and bundle it into a
CAB file. Right. Not a ZIP file. A CAB file.
Microsoft provides the lovely MakeCab

utility, which works but is the very definition of Royal Pain In The Ass. For example, just to put stuff into a CAB file using MakeCab,
you have to create a separate DDF file that describes what you want MakeCab to do. Screw that, I say. I recommend that you use
a very nice little GUI utility named IZArc (that’s an “I” not an “L”), that you can download from here. No, I have no relationship to
and don’t know anything about the author. But his utility worked swell for me.

So, first… sign (and cross-sign) everything you can in your driver package. Sign the CAT file, sign the SYS file (or files), sign any DLLs,
applications… just sign everything. It’s yours, you wrote it, you should sign it. Note that the Attestation Signing signature will
overwrite (not add to) the signature on your CAT file (very annoying), but will actually be added to the signature(s) you provide in

your SYS file.

So, use IZArc to stuff everything in your driver
package into a CAB file. Be careful in formatting
the CAB file: Put the driver package in its own
directory. Do not put any files in the root
directory of the CAB file.

Recall that in order to be able to submit your CAB
file to SysDev, you need to sign it using your super
-special SysDev EV Code Signing Certificate. So,
off I went to OSR’s vault to retrieve our EV Code
Signing Cert hardware token from its ultra-secure
location (Figure 6). I signed the CAB file I created
using this certificate. You can see what I put into
the CAB file, the CAB file itself, and the signature
info for the CAB file, in Figure 7.

(CONTINUED FROM PAGE 16)

(CONTINUED ON PAGE 18)

Figure 6 – Apparently Ease of Access Wins Over Security...

Figure 7 — Signed CAB Ready for Upload

https://msdn.microsoft.com/en-us/windows/hardware/drivers/develop/attestation-signing-a-kernel-driver-for-public-release
http://www.izarc.org/

Page 18
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

So, to begin the Attestation Signing process itself, it’s off to the Microsoft SysDev Portal at https://sysdev.microsoft.com. Oh… by
the way… we couldn’t get IE 11 to work properly with SysDev. We had to use either Chrome or Edge. So, Chrome it was. Note
that we had previously arranged for SysDev access, signed all the necessary agreements, and verified our EV Code Signing

Certificate.

When you first login to SysDev, you’re greeted with
the interface shown in Figure 8.

To upload a driver to sign by “Attestation”, click the
Create Driver Signing Submission option indicated
by the red arrow in Figure 8.

You’ll next be taken to the File Signing Services page
where you can fill out the “Create driver signing
submission” form shown in Figure 9. It’s pretty
simple to fill out. Nothing tricky here at all. Click
“Submit” and you’re on your way.

You’ll get a submission ID and you can monitor the
progress of your submission via the “Manage
submissions” page. It took me less than 30 minutes
to get an email from “sysdev@microsoft.com”
telling me that my driver had been signed and was
ready for download (Figure 10, next page).

From there, all I had to do was to go back to the
Manage Submissions page, click on the submission
ID, and download the signed package (see Figure 11,
next page).

That’s all there is to it. Finished!

Just to make sure that Attestation Signing actually
worked, we successfully installed the driver package
on a newly installed RS1 system. It was nice to see
that there was no pop-up asking “Do you trust this
vendor?” – The installation procedure worked
silently, just as it would if the driver had passed HLK
testing.

We only had one question left: Will the Attestation
Signed driver install on down-level version of
Windows? To test this, we tried to install the driver
on a newly installed Windows 8 system. And,
predictably but unfortunately, this installation did
not work as shown in Figure 12 (next page).

Wrap Up
So, in terms of signing, that’s where things stand as
of today. Life would be much easier if Microsoft

(CONTINUED FROM PAGE 17)

(CONTINUED ON PAGE 19)

Figure 8 — Login to SysDev ... Click Where Indicated

Figure 9 — Fill it In, and Click Submit

https://sysdev.microsoft.com

Page 19
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

Follow us!

would just tell us what the signing policy is going to
be. However, until that time, we get to spend our
time testing out different theories.

We wish we were able to test a newly installed RS1
system for you… perhaps if an OEM or IHV would
like to send us a system that supports Secure Boot,
we can do that testing.

(CONTINUED FROM PAGE 18)

Figure 10 — Fully Cooked in Less Than 30
Minutes

Figure 11 — Just Download the Package

Figure 12 — Attestation Signing is NO Help on Down-Level Operating
Systems

DID YOU KNOW?

You can receive an additional $100 off OSR public seminar registration fees when
you purchase an OSR USB FX2 Learning Kit

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osr.com/seminars/

Page 20
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

the Request either synchronously or asynchronously with a callback using WdfRequestSend. So, if you want to learn one pattern
for formatting and sending Requests, always call WdfIoTargetFormatRequestForXxx and WdfRequestSend for synchronous or
asynchronous processing, and you’ll always be right.

While you could stick with always using the same pattern, there are a few potentially useful optimizations that we should talk
about that apply only to sending Requests to a Local I/O Target. The first of these is using _SEND_AND_FORGET. When you send a
Request using _SEND_AND_FORGET, you’re effectively telling the Framework to (a) send the Request to the Local I/O Target
exactly as you received it and then (b) forget about that Request in terms of any further processing. The send operation is
asynchronous. As soon as you call WdfRequestSend, you relinquish ownership of the Request, you do not get a callback when the
Request is complete, and you’re relieved of having to complete the Request in your driver.

_SEND_AND_FORGET is primarily useful for filter drivers that want to send along Requests that they receive from a Queue but
do not need to process. For example, let’s say you have a filter driver that’s filtering IOCTLs. Your driver is interested in one
specific IOCTL Control Code. If you get an IOCTL that doesn’t have the Control Code you’re interested in, you just want to pass it
down the Device Stack to your Local I/O Target. You don’t care if the driver below you completes the Request successfully. You
don’t ever want to see the Request again. You just want to pass the Request along, just as you received it.

Because of the way it’s typically used,
_SEND_AND_FORGET allows the further
optimization that you do not have to
format the Request before sending it. It
“just knows” to pass along the same
Request parameters to your Local I/O
Target that were passed into your driver.
In fact, you cannot call
WdfIoTargetFormatRequestForXxxx if
you use _SEND_AND_FORGET. You can
see an example of using the
_SEND_AND_FORGET option in Figure 2.

_SEND_AND_FORGET is the lowest
overhead way of using WdfRequestSend

to send along a WDFREQUEST that you’ve received from a
Queue to an underlying device and driver (your Local I/O
Target) without modifying any of the Request parameters. Oh,
by the way, you can only use _SEND_AND_FORGET with
Requests that you got from a Queue. It won’t work with
Requests that you create in your driver using
WdfRequestCreate.

A second optimization that you may wish to consider is the use
of WdfRequestFormatRequestUsing CurrentType. You can use
this function in many of the same cases where you might
otherwise use _SEND_AND_FORGET but you want to specify
either synchronous or asynchronous processing with a callback
for your call to WdfRequestSend. You can see an example of
the use of this function in Figure 3.

Note that it’s also possible to call WdfRequestFormatRequest
UsingCurrentType prior to sending a Request with
WdfRequestSend specifying _SEND_AND_FORGET. While it
may be architecturally valid as far as the Framework is
concerned, doing this doesn’t make a great deal of sense.

(CONTINUED FROM PAGE 9)

(CONTINUED ON PAGE 21)

//
// This control code is not interesting to us. Just send the Request
// down to the next driver in the device stack. No formatting required!
//
WDF_REQUEST_SEND_OPTIONS_INIT(&sendOptions,
 WDF_REQUEST_SEND_OPTION_SEND_AND_FORGET);

status = WdfRequestSend(Request, WdfDeviceGetIoTarget(myDevice), &sendOptions);

if (status == FALSE) {

 status = WdfRequestGetStatus (Request);

 WdfRequestComplete(Request, status);
}

FIGURE 2 — Sending to a Local I/O Target with _SEND_AND_FORGET

//
// Pass along the same parameters that we received.
//
WdfRequestFormatRequestUsingCurrentType(Request);

//
// Completion callback… We need to know that the Request
// succeeded.
//
WdfRequestSetCompletionRoutine(Request,
 FilterRequestCompletionRoutine,
 WDF_NO_CONTEXT);

//
// Send the Request and don't wait for it to be completed
//
ret = WdfRequestSend(Request,
 Target,
 WDF_NO_SEND_OPTIONS);

if (ret == FALSE) {
 status = WdfRequestGetStatus (Request);
 WdfRequestComplete(Request, status);
}

FIGURE 3 — Formatting a Request “Using Current Type” for
a Local I/O Target

Page 21
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

OSR USB FX2 LEARNING KIT

Don’t forget, the popular OSR USB FX2 Learning
Kit is available in the Store at: http://store.osr.com.

The board design is based on the well-known
Cypress Semiconductor USB FX2 chipset and is
ideal for learning how to write Windows drivers in
general (and USB specifically of course!). Even
better, grab the sample WDF driver for this board,
available in the Windows Driver Kit.

Remember, _SEND_AND_FORGET automagically does the formatting, passing along the parameters sent to it. And it does it more
efficiently than separately calling WdfRequestFormatRequestUsing CurrentType, too.

In Summary
I hope you agree that if you view the rules in this way, it’s quite easy to be sure you’re using I/O Targets and WdfRequestSend the
right way. In summary:

Remote I/O Targets
 Always format the Request being sent for the specific I/O Target using a function that starts with the

characters WdfIoTarget, such as WdfIoTargetFormatRequestForXxxx. You may not use
WdfRequestFormatRequestUsingCurrentType.

 Always call WdfRequestSend to send the Request using either synchronous or asynchronous
processing. You may not use _SEND_AND_FORGET.

 If you use synchronous processing, be sure you’ve established a WdfExecutionLevelPassive
constraint for your Device or Queue.

Local I/O Targets
 You may use any of the methods listed under Remote I/O Targets with Local I/O Targets. Methods

for Remote I/O Targets will always work.

 As an optimization, if you want to send a Request you received from one of your WDF Queues to
your Local I/O Target, and you do not want to change any of the parameters in the Request, and you
do not need to see the Request after it is completed, you may choose to call WdfRequestSend using
the _SEND_AND_FORGET option. This will send the Request to your Local I/O Target and effectively
complete it from the viewpoint of your driver. If you do this, do not format the Request.

 Another possible optimization, if you want to pass along a Request that you received from one of

your WDF Queues to your Local I/O Target and you do not want to change any of the parameters in

the Request, but you do want to see the Request after it is completed, you may choose to format

the Request using WdfRequestFormatRequestUsingCurrentType, and then call WdfRequestSend

specifying either synchronous or asynchronous processing. Once again, if you use synchronous

processing, be sure you’ve established a WdfExecutionLevelPassive constraint for your Device or

Queue.

(CONTINUED FROM PAGE 20)

Follow us!

http://store.osr.com/
http://store.osr.com
http://store.osr.com/product/osr-usb-fx2-learning-kit-v2/
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 22
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

channel, and one or more interrupts) as part of their EvtDevicePrepareHardware Event Processing Callbacks. In most respects, an

SPB Controller driver is a pretty ordinary Windows driver. Because the driver for SPB Controller Devices are almost always written

by the OEM/IHV and supplied as part of a system, there aren’t many of these drivers written. As a result of all these factors, we

won’t discuss writing divers for SPB

Controller Devices further in this article.

Drivers for SPB Client Devices resemble

those for any device that’s accessed via

a protocol-based bus. An SPB Client

Device driver opens a Remote I/O

Target to its Controller Device, and

interacts with its device by formatting

WDFREQUESTs and sending them to

the Controller Device.

In terms of hardware resources, a

Client Device driver will always receive

a “Connection ID” in the EvtDevice

PrepareHardware Event Processing

Callback. It might also receive one or

more GPIO resources, which can be

used to provide out of band data or

interrupts from the Client Device to the

driver.

The Connection ID is an opaque

identifier that the Client Device driver

uses to open a Remote I/O Target to

the specific SPB Controller Device to

which the Client Device is attached.

The process of opening the Remote I/O

Target to the correct Controller Device

is accomplished with the assistance of

another system component called the

Resource Hub.

The code that a driver for a Client

Device uses in its EvtDevicePrepare

Hardware Event Processing Callback to

create and open a Remote I/O Target

given a Connection ID is shown in

Figure 4.

In Figure 4, on receiving a Connection ID hardware resource you can see that the Client Device driver first creates an empty I/O

Target object by calling WdfIoTargetCreate. Assuming the empty I/O Target is created successfully, the driver next builds a

Resource Hub name with the macro RESOURCE_HUB_CREATE_PATH_FROM_ID passing in the received Connection ID (passed in

the translated resources in u.Connection.IdLowPart and u.Connection.IdHighPart). This name is used during the I/O Target open

(CONTINUED FROM PAGE 7)

(CONTINUED ON PAGE 23)

case CmResourceTypeConnection: {

 WDF_IO_TARGET_OPEN_PARAMS openParams;
 WDF_OBJECT_ATTRIBUTES targetAttributes;
 WDF_OBJECT_ATTRIBUTES_INIT(&targetAttributes);
 DECLARE_UNICODE_STRING_SIZE(resHubPath, RESOURCE_HUB_PATH_SIZE);

 //
 // Create the device path using the connection ID.
 //
 status = WdfIoTargetCreate(devContext->WdfDevice,
 &targetAttributes,
 &devContext->SpbControllerTarget);

 if (!NT_SUCCESS(status)) {

 // ...

 }

 //
 // Using the Connection ID, create the NAME pointing to the
 // Resource Hub. The Resource Hub will resolve this open
 // by redirecting it to the appropriate Controller Driver
 // (the one to which our device is attached)
 //
 RESOURCE_HUB_CREATE_PATH_FROM_ID(&resHubPath,
 resourceTrans->u.Connection.IdLowPart,
 resourceTrans->u.Connection.IdHighPart);

 //
 // Open a Remote I/O Target to the SPB controller
 //
 WDF_IO_TARGET_OPEN_PARAMS_INIT_OPEN_BY_NAME(&openParams,
 &resHubPath,
 (GENERIC_READ | GENERIC_WRITE));

 status = WdfIoTargetOpen(devContext->SpbControllerTarget,
 &openParams);

 if (!NT_SUCCESS(status)) {

 // ...
 }

 status = Bme280InitializeDevice(devContext);
 status = STATUS_SUCCESS;

 break;
}

Figure 4 — Code from EvtDevicePrepareHardware to open a Remote I/O Target
to the Controller Device

Page 23
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

process to identify the Client Device to the Resource Hub when the I/O Target is opened. Finally, the driver calls WdfIoTargetOpen

to open the Remote I/O Target.

More About Connecting SPB Client Devices to Controller Devices
Opening that Remote I/O Target to the Controller Device involves some pretty cool magic. The Connection ID that’s built into the

Remote I/O Target name uniquely identifies the Client Device to the Resource Hub. The Resource Hub, on receiving the open,

checks the Client Device resources from ACPI and re-routes the I/O Target open operation to the correct Controller Device (Figure

5). This alleviates the Client Device driver from having to figure out which SPB controller instance its Client Device is connected to

(and it is very common to have multiple SPB controllers in a system). In addition, when the Controller Device driver receives the

open for the Remote I/O Target, it knows to which specific Client Device the open corresponds (via information from SPBCx). This

allows the Controller Device driver to determine the bus address to use to communicate with the Client Device. Because the

Controller Device driver has this information, the Client Device driver never needs to know (and in fact, generally cannot know) the

address of its device on the bus. The bus address is completely handled by the Controller Device driver.

But there’s another benefit to this Resource Hub and SPBCx

integration mechanism. Because SPBCx provides a uniform

interface for Client Device drivers to use to interact with the

Controller Device driver regardless of whether the Client Device is

connected via I2C or SPI, making the connection via the Resource

Hub and SPBCx also eliminates the Client Device driver from

having to know the type of bus to which the Client Device is

physically connected. Thus, if you’re writing a driver for an IHV

that makes a given sensor device, for example, and if that device

can be connected via either I2C or SPI (which is quite common),

your driver doesn’t have to change at all based on how the device

is physically connected. How cool is that?

Reading and Writing Client Data
Once the Remote I/O Target is opened to the Controller Device,

the driver for a Client Device can perform READ and WRITE

operations on its device via the Controller Driver using

WdfRequestSend to send ordinary read and write Requests.

However, this isn’t typical of how a driver interacts with an SPB Client Device. This is because the typical sequence of operations

that the Client Device driver uses to read data from an SPB Client Device usually involves at least two operations. The most

common pattern is:

(CONTINUED FROM PAGE 22)

(CONTINUED ON PAGE 24)

OSR’S CORPORATE, ON-SITE TRAINING
Save Money, Travel Hassles; Gain Customized Expert Instruction

We can:

 Prepare and present a one-off, private, on-site seminar for your team to address a
specific area of deficiency or to prepare them for an upcoming project.

 Design and deliver a series of offerings with a roadmap catered to a new group of
recent hires or within an existing group.

 Work with your internal training organization/HR department to offer monthly or
quarterly seminars to your division or engineering departments company-wide.

Figure 5 — Client Driver opens Remote I/O Target to
Controller Driver via the Resource Hub

http://www.osr.com/private-on-site-training/

Page 24
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

1. The Client Device driver sends a write to the Remote I/O Target representing the Controller Device. This

write is typically one byte in length and comprises a value indicating which register on the Client Device it

wants to read;

2. The Client Device driver sends a read to the Controller Device’s Remote I/O Target to read the data from

the previously specified register. The number of bytes to be read is device specific and depends on the

data that’s being retrieved.

Pretty simple, right? The only trick that’s involved is that the write and the read must generally take place in adjacent transactions

on the SPB bus. That is, the Controller Device driver can’t process the WRITE to the Client Device (to select the appropriate device

register), then process a read or write to some other device on that same SPB bus, and then process the READ for the Client

Device. That just won’t work.

Again, SPBCx significantly simplifies things for the Client Device driver writer by providing an IOCTL design to perform the sequence

described above. That IOCTL is IOCTL_SPB_EXECUTE_SEQUENCE. This IOCTL takes an SPB_TRANSFER_LIST in its Input Buffer. An

SPB_TRANSFER_LIST contains a header and one or more SPB_TRANSFER_LIST_ENTRIES. Each TRANSFER_LIST_ENTRY contains a

description of the direction of the transfer (that is, if the requested transfer is a write operation to the device or a read operation

from the device), and a description of the data buffer to be used. The data buffer description can either be provided by a kernel

virtual address and length in bytes, or an MDL. The number of SPB_TRANSFER_LIST_ENTRIES provided is indicated in the

SPB_TRANSFER_LIST_HEADER. Figure 6 illustrates an SPB_TRANSFER_LIST.

In Figure 6, you can see an SPB_TRANFER_LIST that

describes a sequence of two transfers. The header

for the Transfer List is shown in blue. Each transfer

is described by a Transfer List Entry.

For example, to read four bytes starting at a

specific register address on the Client Device, the

driver would set the TransferCount field to 2,

indicating that two TRANSFER_LIST_ENTRY

structures would be used to represent the overall

operation. It would set the first TRANSFER_

LIST_ENTRY to represent the write of the register

number to the Client Device. The Client Device

driver would set the Direction field of the first

TRANFER_LIST_ENTRY to SpbTransferDirection

ToDevice, indicating a write operation to the

device. The driver would put the Client Device

register number from which it wanted to read into a buffer, and set the Buffer field of the first transfer list entry to point to that

buffer, indicating a length of one byte. The second TRANSFER_LIST_ENTRY would then be set up to represent the read operation.

The Direction in the second TRANSFER_LIST_ENTRY would be set to SpbTransferDirectionFromDevice, and the Buffer field of this

TRANSFER_LIST_ENTRY would be set to point to a data buffer to hold the 4 data bytes read from the device.

You might also notice the DelayInUs field in each TRANFER_LIST_ENTRY. This field allows the driver to specify a minimum amount

of time that should take place before a given transfer is initiated. One use for this delay is to allow a Client Device time to perform

a specific operation that’s been requested by one transfer in the sequence before, for example, starting a read for the results of

that operation by a subsequent transfer in the sequence.

(CONTINUED FROM PAGE 23)

(CONTINUED ON PAGE 25)

Figure 6 — SPB_TRANSFER_LIST with 2 SPB_TRANFER_LIST_ENTRYs

Page 25
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

An example of a generic routine that will read a specified number of bytes from a given SPB device register is shown in the

OSRSpbReadRegisters function in Figure 7.

In the example shown in Figure 7, the

routine uses the macro

SPB_TRANFER_LIST_AND_ENTRIES to

allocate an SPB_TRANSFER_LIST with

two SPB_TRANSFER_LIST_ENTRY

structures. The Transfer List Header is

then initialized using the SPB_TRANSFER

_LIST_INIT function. The routine then

initializes the two SPB_TRANSFER_LIST

_ENTRY structures to describe each

transfer: The first entry describes a one-

byte write that contains the register

number from which the read is to be

performed. The second entry describes

a read. Note that the routine uses the

SPB_TRANFER_LIST_ENTRY_INIT_

SIMPLE macro to initialize each of these

SPB_TRANFSFER_LIST_ENTRY

structures, and describes the data buffer

using a kernel virtual address and buffer

length in bytes. The routine then builds

a MEMORY_DESCRIPTOR to describe the

buffer containing the SPB_TRANSFER_

LIST (because that’s what the Send

function that it uses wants). It then calls

WdfIoTargetSendIoctlSynchronously to

send the sequence to the Remote I/O

Target that represents the Controller

Device. Note that because it sends the

sequence to the Remote I/O Target

synchronously, this routine must be

called at IRQL PASSIVE_LEVEL.

It’s That Easy
With no complex configuration and the

assistance provided by the SPBCx and

the Resource Hub, writing a driver for an

SPB device can be quite easy. As should

be the case in WDF drivers, the

(CONTINUED FROM PAGE 24)

(CONTINUED ON PAGE 26)

_Use_decl_annotations_
NTSTATUS
OSRSpbReadRegisters(PBME280_DEVICE_CONTEXT DevContext,
 UCHAR StartingRegister,
 PVOID OutputBuffer,
 ULONG OutLength)
{
 NTSTATUS status;
 WDF_MEMORY_DESCRIPTOR sequenceBufferDescriptor;
 ULONG_PTR bytesTransfered;

 // Allocate space for a 2 entry transfer list
 // for the Sequence of operations: WRITE followed by READ
 //
 SPB_TRANSFER_LIST_AND_ENTRIES(2) tList;

 // Initialize the list
 //
 SPB_TRANSFER_LIST_INIT(&tList.List, 2);

 // Initialize the WRITE with the register number that we want to fetch
 // (this is just one byte)
 //
 tList.List.Transfers[0] = SPB_TRANSFER_LIST_ENTRY_INIT_SIMPLE(
 SpbTransferDirectionToDevice,
 0, // No delay
 &StartingRegister,
 sizeof(StartingRegister));

 // And initialize the READ with the place to store the returned value
 //
 tList.List.Transfers[1] = SPB_TRANSFER_LIST_ENTRY_INIT_SIMPLE(
 SpbTransferDirectionFromDevice,
 0, // No delay
 OutputBuffer,
 OutLength);

 // The send operation wants the buffer described with a MEMORY_DESCRIPTOR,
 // so that’s what we build here.
 //
 WDF_MEMORY_DESCRIPTOR_INIT_BUFFER(&sequenceBufferDescriptor,
 &tList,
 sizeof(tList));

 // Send the sequence to the device: a 1 byte WRITE, followed by READ of the
 // amount of data specified.
 //
 status = WdfIoTargetSendIoctlSynchronously(DevContext->SpbControllerTarget,
 NULL,
 IOCTL_SPB_EXECUTE_SEQUENCE,
 &sequenceBufferDescriptor,
 NULL,
 NULL,
 &bytesTransfered);

 if (bytesTransfered != OutLength + 1) {

#if DBG
 DbgPrint("Bytes Transfered... expected 0x%0x, got 0x%0x",
 (OutLength + 1),
 bytesTransfered);
#endif
 status = STATUS_BAD_VALIDATION_CLASS;
 }

 return(status);
}

Figure 7 — A Generic Function to

Perform Read Operations for an SPB

Device Register.

Page 26
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

Framework and the available Class Extensions work together to make much of the interfacing details simple (see sidebar, What are

WDF Class Extensions? below). This frees you up and allows you to spend your time determining how best to interact with your

device and get your project done. That’s not to say that everything about these devices is always simple, of course. For example,

power management for SPB devices can sometimes be complex when these devices are integrated into system that support

Modern Standby. But that’s a topic for a whole other article.

In our WDF Core Concepts seminar, we spend time talking about the new buses that Windows supports, including SPB but also

GPIO and async. If you’d like to learn more about writing drivers for these types of devices, we hope you’ll join us.

(CONTINUED FROM PAGE 25)

Follow us!

NEED TO KNOW WDF?

Tip: You can read all the articles ever published in The NT Insider and still not come close to
what you will learn in one week in our WDF seminar. So why not join us?

Seminar Outline and Information here: http://www.osr.com/seminars/wdf-drivers/

Upcoming presentations:

 Amherst, NH (OSR) 25-29 July
 Amherst, NH (OSR) 3-7 October

S tarting in Windows 8, the concept of WDF Class Extensions was introduced. Class Extensions provide a way to add support for

a new class of device, such as SPB devices or NFC devices, into WDF without having to modify the underlying Framework itself.

Class Extensions differ from other extended WDF support for (such as, for example, that provided for USB devices) because instead

of the device class support being part of the Framework, it’s supplied by an added DLL. This DLL, plus the Framework, plus the

driver together form a complete entity.

Aside from the fact that they do not physically form part of the WDF Framework, what most quickly identifies a function as

belonging to a Class Extension as opposed to the core WDF Framework is its name. The names of functions implemented by and

structures defined by a Class Extension begin with an extension-specific prefix. For example, the functions provided by the SPB

Class Extensions start with “Spb” (such as SpbRequestComplete, which are used by drivers for SPB Controller Devices, or the

previously discussed SPB_TRANSFER_LIST structure). As a second example, functions provided by the NFC Class Extensions all start

with “NfcCx” (such as the NfcCxDeviceInitialize function or the NFC_CX_SEQUENCE structure).

Other than the naming conventions and the fact that they do not physically form part of the WDF Framework, Class Extensions are

pretty much indistinguishable from any other type of WDF support. Class Extensions can define unique Event Processing Callbacks

that a driver can implement. They can also perform processing of standard WDF callbacks either in place of, or in addition to,

those provided by a WDF driver.

https://www.osr.com/seminars/wdf-drivers/
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/wdf-drivers/

Page 27
www.osr.com

The NT Insider May - June 2016 © OSR Open Systems Resources, Inc.

the last time you were at a driver writer’s conference that didn’t include a heaping helping of Asian and/or Eastern European

engineers? Ever wonder why? I’d say it’s probably because these people actually learned something beyond the definition of

“constructor” and “destructor” while in university. Talk to them sometime. Ask them what they learned in school. I bet before

they could graduate they had to learn the difference between a North Bus and a bus heading north.

Before you go all “America First” on me, decide to put me in jail without the right to counsel, and accuse me of being an Al Qaeda

sympathizer, please understand that I’m not saying that there are not some very good CS programs taught at some very good

universities here in the United States. Several months ago on a plane, I actually sat next to a kid who was completing his junior

year at CMU and actually knew what a spin lock was. Even more salutary was the fact that he knew why he’d want to use one. So,

I suspect all is not lost. However, also note that this kid was sitting in first class. I wonder if this is significant.

We, here in the industry, have got to do something to try and stop the stupidizing of CS curricula in the States. That means you

should do something about this, oh gentle and ever-lazy reader. If you’re on an alumni committee, ask what’s being taught in the

CS department. Make your views known. If you teach at a University (even part-time), lobby to teach a real operating systems

course to undergraduates. Push the department chair (who probably came up during the time when operating systems were still

important and already harbors a closet resentment for the fact that assembler language isn’t taught to freshmen) to talk to folks in

the industry about our needs and revisit the graduation requirements.

If you’re a recent CS grad, write to your former professors and tell them how well your education prepared you for the world of

writing systems software. Explain to them that if they taught you the first thing about the fundamentals of computer science, you

wouldn’t have been so badly disadvantaged compared to your non-US trained colleagues. Copy and mail them this article. Heck,

copy and send them this entire issue of The NT Insider just to see if they can understand anything more than this article and the

letters section.

For the good of our industry, the current trend has to change. Either that or the rest of us will have to choose between getting

lobotomized (so that we can make effective use of the Driver Wizard that will ship as part of Microsoft Office) and moving to

Taiwan (where they’ll still be writing drivers that talk to hardware). Me? I’ve already taken two semesters of Chinese, thank you.

Peter Pontificates is a regular column by OSR Consulting Partner, Peter Viscarola. Peter doesn’t care if you agree or disagree with
him, but there’s always the chance that your comments or rebuttal could find its way into a future issue. Send your own comments,
rants or distortions of fact to: PeterPont@osr.com.

(CONTINUED FROM PAGE 5)

FILE ENCRYPTION SOLUTION FRAMEWORK
Develop Per-File Encryption Solutions Almost Exclusively in User Mode!

The OSR File Encryption Solution Framework (FESF) allows Clients to incorporate transparent,
per-file encryption into their products—with the added benefit of development in user mode.

Beta releases of FESF are now available via a limited-access Early Adopter Program (EAP).

Learn more about FESF here, or contact the OSR Sales team at sales@osr.com.

Follow us!

mailto:PeterPont@osr.com?subject=Peter%20Pontificates
http://www.osr.com/fesf/
http://www.osr.com/fesf/
mailto:sales@osr.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

®

A private, on-site seminar format
allows you to:

 Get project-specific questions
answered. OSR instructors have
the expertise to help your group
solve your toughest roadblocks.

 Customize your seminar. We
know Windows drivers and file
systems; take advantage of it.
Customize your seminar to fit
your group's specific needs.

 Focus on specific topics. Spend
extra time on topics you really
need and less time on topics you
already know.

 Provide an ideal experience.
For groups working on a project
or looking to increase their
knowledge of a particular topic,
OSR's customized on-site
seminars are ideal.

 Save money. The quote you
receive from OSR includes
everything you need. There are
never additional charges for
materials, shipping or instructor
travel.

 Save more money. Bringing
OSR on-site to teach a seminar
costs much less then sending
several people to a public class.
And you're not paying for your
valuable developers to travel.

 Save time. Less time out of the
office for developers is a good
thing.

 Save hassles. If you don't have
space or lab equipment available,
no worries. An OSR seminar
consultant can help make
arrangements for you.

W hen we say “we practice what we teach”, this mantra directly translates into the value we
bring to our seminars. But don’t take our word for it...

THE NT INSIDER - You Can Subscribe!

Just send a blank email to join-ntinsider@lists.osr.com
— and you’ll get an email whenever we release a new
issue of The NT Insider.

Seminar Dates Location

Internals & Software Drivers 13-17 June Dulles/Sterling, VA

WDF Drivers I: Core Concepts 25-29 July At OSR! Amherst/Nashua, NH

Kernel Debugging & Crash Analysis 8-12 August At OSR! Amherst/Nashua, NH

Internals & Software Drivers 12-16 September Seattle, WA

WDF Drivers I: Core Concepts 3-7 October At OSR! Amherst/Nashua, NH

WDF Drivers II: Advanced 11-14 October At OSR! Amherst/Nashua, NH

Developing File Systems 7-10 November Vancouver, BC

Join OSRHINTS

More Dates/Locations Available—See website for details

http://www.osronline.com/custom.cfm?name=login_joinok.cfm
mailto:join-ntinsider@lists.osr.com
http://www.osr.com/seminars/software-drivers/
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/software-drivers/
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/advanced-wdf
http://www.osr.com/seminars/file-systems/
mailto:join-osrhints@lists.osr.com
http://www.osr.com/seminars

