
®

 NTSTATUS status;
 WDF_INSIDER_ATTRIBUTES newestInsider;
 WDF_ARTICLE_INFO articles;

 WDF_INSIDER_ATTRIBUTES_INIT(&newestInsider,
 "January/February 14");

 WDF_ARTICLE_INFO_INIT_SPECIFY_ARTICLE_COUNT_ \
 USING_CURRENT_TYPE_DEFAULT_QUEUE(&articles,

 6);
 PAGED_CODE();

 // Getting Started Writing Windows Drivers
 articles.ArticleList[0].Title = "Ready, Set---Go!";
 articles.ArticleList[0].Page = 4;

 // Seminar: Advanced WDF Driver Development
 articles.ArticleList[1].Title = "OSR's Newest Seminar";
 articles.ArticleList[1].Page = 5;

 // WDF File Object Callbacks Demystified
 articles.ArticleList[2].Title = "Grand Opening";
 articles.ArticleList[2].Page = 6;

 // Windows Pool Manager
 articles.ArticleList[3].Title = "Debugger's Delight";
 articles.ArticleList[3].Page = 8;

 // The Truth Behind PAGE_FAULT_IN_NONPAGED_AREA
 articles.ArticleList[4].Title = "Analyst's Perspective";
 articles.ArticleList[4].Page = 10;

 // Driver Installers
 articles.ArticleList[5].Title = "Tim Roberts on Installation";
 articles.ArticleList[5].Page = 11;

 articles.PontificationTitle = "Always Forward, Onward...";
 articles.PontificationPage = 3;

 WdfInsiderAttributesSetArticleInfo(&newestInsider,
 &articles);

 status = WdfInsiderCreate(&newestInsider,
 WDF_NO_OBJECT_ATTRIBUTES,
 WDF_NO_HANDLE);

 if (!NT_SUCCESS(status)) {
 DbgPrint("Can't create article\n");
 // TODO: Is goto OK here??
 // goto exit;
 return(STATUS_UNSUCCESSFUL);
 }

A
 p

u
b
lic

a
ti
o

n
 o

f
O

S
R

 O
p
e
n
 S

y
s
te

m
s
 R

e
s
o
u
rc

e
s
,
In

c
.

Page 2
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

Published by
OSR Open Systems Resources, Inc.
105 Route 101A, Suite 19
Amherst, New Hampshire USA 03031
(v) +1.603.595.6500
(f) +1.603.595.6503

http://www.osr.com

Consulting Partners
W. Anthony Mason
Peter G. Viscarola

Executive Editor
Daniel D. Root

Contributing Editors
Scott J. Noone
OSR Associate Staff

Send Stuff To Us:
NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2014 All rights
reserved. No part of this work may be
reproduced or used in any form or by any means
without the written permission of OSR Open
Systems Resources, Inc.

We welcome both comments and unsolicited
manuscripts from our readers. We reserve the
right to edit anything submitted, and publish it at
our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are
the property of their respective owners. “OSR”,
“OSR Online” and the OSR corporate logo are
trademarks or registered trademarks of OSR
Open Systems Resources, Inc.

We really try very hard to be sure that the
information we publish in The NT Insider is
accurate. Sometimes we may screw up. We’ll
appreciate it if you call this to our attention, if
you do it gently.

OSR expressly disclaims any warranty for the
material presented herein. This material is
presented “as is” without warranty of any kind,
either expressed or implied, including, without
limitation, the implied warranties of
merchantability or fitness for a particular
purpose. The entire risk arising from the use of
this material remains with you. OSR’s entire
liability and your exclusive remedy shall not
exceed the price paid for this material. In no
event shall OSR or its suppliers be liable for any
damages whatsoever.

It is the official policy of OSR Open Systems
Resources, Inc. to safeguard and protect as its
own, the confidential and proprietary
information of its clients, partners, and others.
OSR will not knowingly divulge trade secret or
proprietary information of any party without
prior written permission. All information
contained in The NT Insider has been learned or
deduced from public sources...often using a lot of
sweat and sometimes even a good deal of
ingenuity.

OSR is fortunate to have customer and partner
relations that include many of the world’s leading
high-tech organizations. As a result, OSR may
have a material connection with organizations
whose products or services are discussed,
reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way
endorsed by Microsoft Corporation. And we like
it that way, thank you very much.

WE KNOW WHAT WE KNOW

We are not experts in everything. We’re not even experts in
everything to do with Windows. But we think there are a few
things that we do pretty darn well. We understand how the
Windows OS works. We understand devices, drivers, and file
systems on Windows. We’re pretty proud of what we know about
the Windows storage subsystem.

What makes us unique is that we can explain these things to
your team, provide you new insight, and if you’re undertaking a
Windows system software project, help you understand the full
range of your options.

And we also write kick-ass kernel-mode Windows code. Really.
We do.

Whether you’re looking for training, consulting, or somebody for
the development of your project end-to-end… why not fire-off an
email and find out how we can help. If we can’t help you, we’ll
tell you that ,too.

Contact: sales@osr.com

W hen it comes to instituting new procedures, making decisions or picking up the latest tech,
OSR’s modus operandi tends to be “don’t think...just run with it”. Of course, there have

been some advancements in the technology space that we prefer to sit back and watch, make fun
of, insist will die a painful death, and then...slowly come around on.

The social media craze is one of them.

Thus, over the coming weeks and months, you can expect us to begin using our social media sites
to provide timely technical insight, announce new initiatives or programs intended to assist the
community, and generally update folks as to “goings on” at OSR.

Click one of the icons below to join the fun, or find us at:

FB: https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
Twitter: http://www.twitter.com/osrdrivers
LinkedIn: http://www.linkedin.com/company/osr

mailto:sales@osr.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 3
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

C an you hear it? It’s the
drumbeat that says

“forward, onward, upgrade
to newer/faster/better/
newer/newer/newer.”
There’s no place this drum
beat is louder than in
Redmond, Washington.

I’m sure you’ve read that Windows XP (SP 3, to be specific) will
be reaching the end of its super-duper double secret Extended
Support as of April of this year. But did you know that XP has
been out of what’s called “Mainstream Support” since 2009?
And, for both people who installed it, Mainstream Support for
Windows Vista ended sometime in 2012. Heck even support for
Windows 7 RTM (with no service packs) ended last year in 2013.

I get that support has to end sometime. All good things must
come to an end. And I get that Windows XP RTM’ed in 2001,
and XP SP3 was released in 2008, two years after Windows
Vista.

Here’s the problem, though: Lots of people are still running
Windows XP. Lots and lots of people. How many? ZDNet (an
authority second only to Wikipedia) says that between 25 and
33 percent of all the world’s desktops are still running
Windows XP (http://www.zdnet.com/windows-xp-what-to-
expect-once-microsoft-shuts-down-support-7000025348/).
Why? Probably because XP works perfectly well for the purpose
it’s used and the environment that it’s being used in. Heck, I’ve
got a computer at home that I use as part of an amateur radio
system that still runs XP. It runs very well, too, thank you very
much.

You’re probably wondering why I’m pontificating on this topic. I
write system software. Who cares about XP, right? Let me
answer that for you: Our clients care about Windows XP. And
not because they have amateur radio setups that use it, either.
Our clients care because their customers care. That means our
clients make supporting Windows XP our problem.

So if OSR writes a driver in many cases (not all, mind you, but
many) the client will want that driver to support Windows XP or
Windows Server 2003. Heck, we just finished designing and
implementing a complex piece of storage monitoring software
that had to work on Server 03 and later.

But we’ve got KMDF and we can always just ship that latest co-
installer and we’re good to go, right? The most recent rev of
KMDF is V1.13, so we can just use that. Well, wrong. This is
where it gets sticky.

The Windows 8 WDK only supports building drivers targeted at
Windows Vista and later. The Windows 8.1 WDK only supports
building drivers for systems running Windows 7 or later. OK, so
using the 8.1 WDK and losing Vista support is no big loss…who
cares about Vista. The problem I’ve discovered is people DO still
care about Server 2008.

So if I want support for Windows XP, I have to use the Windows
7 WDK. And the WDK for Windows 7 only supports KMDF V1.9.
What’s worse is that the Windows 7 WDK uses the old sources/
dirs method of building driver projects. Starting in Windows 8,
the WDK uses the new driver development environment that’s
integrated with Visual Studio and does not support the old
sources/dir projects. So, if I need to support Windows XP I need

(CONTINUED ON PAGE 23)

KERNEL DEBUGGING &
CRASH ANALYSIS SEMINAR

Fundamentals, Tips, Tricks &
Techniques

Next presentation:

Dulles/Sterling, VA
24-28 March

Phone: +1.603.595.6500
Email: seminars@osr.com

DEVELOPING FILE SYSTEMS
FOR WINDOWS SEMINAR
Let Industry-Recognized Experts

Guide Your Learning

Next presentation:

Boston/Waltham, MA
13-16 May

Phone: +1.603.595.6500
Email: seminars@osr.com

http://www.zdnet.com/windows-xp-what-to-expect-once-microsoft-shuts-down-support-7000025348/
http://www.zdnet.com/windows-xp-what-to-expect-once-microsoft-shuts-down-support-7000025348/
http://www.osr.com/debug.html
http://www.osr.com/debug.html
mailto:seminars@osr.com?subject=Seminar%20interest
http://www.osr.com/fsd.html
http://www.osr.com/fsd.html
mailto:seminars@osr.com?subject=Seminar%20interest

Page 4
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

Y ou’re working at some company. They’ve decided to
support a new device on Windows. Or perhaps they want

to add some features to an existing device that’s already
supported by Windows. Or, just maybe your company needs to
collect some information from the operating system, which is
only available from kernel-mode. Regardless of which of these
describes your situation, somebody is going to need to write a
driver to accomplish this goal.

Since you’re a clever guy and eager to learn new stuff, your
managertroid asks you if you’d like to write the driver. You say
“Sure!” The problem? You’ve never written a driver for
Windows before. Where do you begin?

Believe it or not, one of the most commonly asked questions we
receive here at OSR is “How do I write a driver for Windows?”
You’d think the answer would be simple. And sometimes it is.
But, all too often, the answer is not only non-obvious, it’s
fraught with complexity.

The answers to the question, “How do I write a driver for my
device on Windows” come in three categories:

 What you need to know

 What development tools (and stuff) you need

 What driver model to use

We’ll describe each of these in individual sections, below.

What You Need To Know
The things you need to know fall into two categories:

 Personal background about the Windows operating system
and devices that’ll allow you to readily learn about how to
write Windows drivers.

 Technical information about the hardware device you need
to write your driver for (if you’re writing a driver for a
hardware device).

Personal Knowledge
Items in the first category, personal background knowledge, are
actually pretty simple. To be able to write drivers for Windows
and not just confuse yourself, you need to have at least general
knowledge of computer operating systems and Windows in
particular. You probably know most of what you need if you
took a general OS Concepts class when you were in school. If
you understand about devices, registers, interrupts, virtual
memory, scheduling, multi-threaded programming, reentrancy,
and concurrency issues… you’re more than half-way there. You
can pick-up the Windows-specific information you need from
doing a bit of reading. Please don’t skip this step. We spend
almost two days in the 5-day driver seminar we teach here at

OSR just discussing Windows OS and I/O subsystem
architecture. So, it’s important.

Also, if you’re not familiar with programming on Windows
systems from a user perspective (maybe you’ve been working in
Linux all your life… if so, first of all, I’m sorry… but I digress) it
would also be helpful to know a bit about Windows I/O
fundamentals.

If you need to brush-up on your OS concepts, would like to
know more about Windows OS concepts in particular, or you’d
like to learn more about how I/O is performed in Windows, we
have some reading suggestions in the Sidebar labeled
Understanding Windows OS and I/O Concepts (See P. 16).
Doing that reading should set you up well for your task for
writing Windows drivers.

One other thing you’ll need to know in terms of personal
background is something about the hardware architecture that’s
typical of the platform on which your hardware will be running.
Whether the device you’re writing the driver for will run on PC
(desktop to server) systems or used exclusively in an ARM SoC
system, knowing something about the hardware environment –
such as common buses and hardware concepts – that are
unique to that platform would be valuable. You don’t need to
know a lot. We’re not saying you need to be a hardware
designer. We’re just saying knowing, for example, the basic
concepts of PCIe or USB or SPI or whatever bus your device
connects to will help speed you on your way as you write your
driver.

 About Your Hardware
If you’re writing a driver to support a hardware device on
Windows, you’ll need the hardware specifications for the device
you’ll be supporting. The information you need usually takes
the form of a “data sheet” (which is often more like a book than
a single sheet of paper) that describes the register-level
interface to your device. Your hardware designer can give this
to you. You need the specifics of your device, by the way. If
the device you’ll be writing your driver for is implemented using
some sort of PLD like an FPGA, don’t let your hardware designer
simply point you off to the hardware spec for the PLD device
(hardware designer waves her hand at you while saying: “Oh,
we’re using an Arria II GX. Just go to Altera’s web site and
download what you need. Bye.”). You need to know how the
designer has implemented the register interface using the
chosen PLD device, not the specs for the PLD itself.

Development Tools (and Stuff) You Need
Over the past few years, the tools used for Windows driver
development have undergone nothing short of a revolution.
Gone (well, mostly) are the days when you had to use special

(CONTINUED ON PAGE 16)

Page 5
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

OSR’S NEWEST SEMINAR: ADVANCED WDF DRIVER DEVELOPMENT

O ver the past couple of years several of our clients and a bunch of our students have convinced us that
there’s a real need for folks to move beyond the basics of WDF. And if people are going to do this, then

the least we can do is give them the benefit of our experience. After all, the folks here at OSR were involved
in the design of WDF from its earliest days, and have been writing KMDF drivers since even before the model
was first publically released.

In thinking about what should be in our Advanced WDF Driver Development class, we thought that – more
than anything – the class should be focused on solving common challenges that people encounter using
practical methods. By “practical” here, we mean both documented and well-understood, even if that
understanding isn’t common knowledge among WDF developers.

For example, many people want to learn about optimal
methods of notifying applications of events and moving
data between user-mode and kernel mode. Those of
you who spend any time reading NTDEV will know that
we most frequently recommend people simply use
read/write requests, and for event notification we
recommend the Inverted Call Model. We recommend
these approaches because they work best for most
times and for most uses. But suppose you need better
performance or lower overhead than you get with
Buffered I/O or Direct I/O?

There are indeed alternative techniques you can use.
Some of those are Neither I/O, Fast I/O for Device
Control, and shared memory. The problem with
recommending these techniques is that they require a
level of understanding that’s considerably greater than
that required to get a WDFREQUEST off a
WDFQUEUE. It’s not that they require some deep,
secret, mystic, knowledge of the source code or that
these techniques are hard. Rather, these techniques
require a more considered approach, one in which the
applicable conditions, their advantages, and disadvantages are all carefully evaluated. Learning to use these
techniques so their benefits are maximized and their costs minimized, generally requires a bit of experience.

We created our Advanced WDF Driver Development seminar with precisely these types of problems in mind.
Whether it’s kernel-mode to user-mode communication, communication between drivers, or debugging
invalid memory accesses (when do you get PAGE_FAULT_IN_NONPAGED_AREA versus
IRQL_NOT_LESS_OR_EQUAL? We’ll tell you!), our approach is to describe the problem domain, present
various possible solutions in order of increasing complexity, discuss the advantages and disadvantages of
each potential solution, and then present some guidelines about when each solution might best be used.

In addition to these bigger issues, we also spend time on some of the smaller practical issues we all
encounter in WDF driver development. Things like why relying on WDF object parenting for child object
destruction isn’t always as simple as it seems. Or what’s causing all those 0x9F blue screens that people
seem to be seeing lately. We even spend time talking about work queues, both system-provided and rolling
your own, and when we think it makes sense to use each.

We also, finally, have the time in this seminar to discuss the topics that people have most frequently asked us
about over the years: Busmaster DMA (including MSI, MSI-x and NUMA issues), writing bus drivers, and
even our recommendations of how to use the wide variety of tools (SDV, Code Analysis, Windows DV)
available to driver developers these days.

Check out the outline for the seminar. Maybe you’ll join us for our inaugural offering? Everyone who attends
our first public Advanced WDF Driver Development seminar will get a cool commemorative OSR coffee mug.
See you there?

INAUGURAL PRESENTATION
Advanced WDF Drivers

Palo Alto, CA 5-8 May

Free OSR coffee mug to all
attendees of this presentation!

Phone: +1.603.595.6500
Email: seminars@osr.com

http://www.osr.com/advancedwdf.html
http://www.osr.com/advancedwdf.html
http://www.osr.com/advancedwdf.html
mailto:seminars@osr.com?subject=Seminar%20interest

Page 6
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

M ost drivers don’t care when an application or a driver
opens or closes their device. In fact, not caring is so

common that you have to go out of your way in WDF to be
notified of these operations. However, you might want to be
notified in order to track the number of open instances on your
device, or to keep track of per open instance state. For
example, let’s say that your driver provides some sort of
encryption service. Each time a user opens your encryption
device, you generate a unique key that’ll be used by all I/O
requests sent on that open instance.

Of course, any time you implement features that aren’t
commonly used, there’s a chance for the documentation and
samples to be a bit lacking. In this article, we’ll cover all the
options that are available to you if you find yourself in the not so
common case.

WDFFILEOBJECTs and KMDF
The native File Object represents a
single, specific, open instance of a
device (or a file on a
device). Applications create new
File Objects by calling CreateFile
and destroy File Objects by calling
CloseHandle.

The KMDF abstraction of the
native File Object is the
WDFFILEOBJECT. The WDF File
Object closely mirrors the native File Object and is used to
represent a unique open instance of a WDF Device Object. As
with all WDF objects, the WDF File Object supports a series of
Event Processing Callbacks, properties, and the standard
Common Object Attributes.

WDFFILEOBJECT Event Processing Callbacks
The WDF File Object supports the following Event Processing
Callbacks provided as part of the WDF_FILEOBJECT_CONFIG
structure: EvtDeviceFileCreate, EvtFileCleanup, and EvtFileClose.
Let’s examine the purpose of each of these Event Processing
Callbacks in turn.

EvtDeviceFileCreate
While slightly odd in its naming, EvtDeviceFileCreate is the Event
Processing Callback raised when a WDF File Object is created.
This would be, for example, as a result of a user application’s call
to CreateFile. It is during the processing of this routine that the
driver instantiates any unique state for this open instance.

The EvtDeviceFileCreate function prototype is as follows:

VOID
EvtDeviceFileCreate(
 In WDFDEVICE Device,
 In WDFREQUEST Request,
 In WDFFILEOBJECT FileObject
);

Note that we are provided a WDF Device Object handle, which
represents the WDF File Object’s target device. We are also
provided a WDF Request Object handle, which is the WDF
abstraction of the native I/O operation representing the creation
of the File Object. As part of handling this Event Processing
Callback, the driver must call WdfRequestComplete on this
request to indicate the result of the operation to the requestor.
As an aside that we will revisit later, this WDF Request Object is
unique in KMDF in that it is not queue presented, meaning that
it has no parent WDF Queue Object.

Lastly, we are provided the
handle of the WDF File Object
that is currently being
instantiated.

EvtFileCleanup
EvtFileCleanup is the Event
Processing Callback invoked
when the native File Object
enters the cleaned up state.
That is to say, this event is
raised when the native handle
count drops to zero. This state

is triggered directly as a result of the application’s call to
CloseHandle.

The EvtFileCleanup function prototype is as follows:

VOID
EvtFileCleanup(
 In WDFFILEOBJECT FileObject
);

Unlike in the case of EvtDeviceFileCreate, we are not provided a
WDF Request Object handle as EvtFileCleanup operations. This
is because Cleanup operations are always assumed to be
successful. Note however that cleanup operations do arrive at
the Framework as native I/O requests, so KMDF is completing
these requests on our behalf “underneath the covers.”

EvtFileClose
EvtFileClose is the Event Processing Callback raised when the
native File Object enters the closed state. That is to say, this
event is raised when the native reference count drops to zero.
This state is triggered some time after the application’s call to
CloseHandle.

(CONTINUED ON PAGE 7)

“In general, this is why it makes sense to

defer tearing down any unique state for this

open instance until the EvtFileClose Event

Processing Callback. This eliminates any

races between tearing down the open

instance state and using the state in the

other I/O paths.”

Page 7
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

You might notice that this Event Processing Callback seems
similar to EvtFileCleanup. Both are ultimately called as a result
of the application calling CloseHandle, so why is there a
distinction? In EvtFileCleanup, we are simply notified that the
application has closed its handle and can no longer use the
native File Object to perform I/O. However, there still may be I/
O operations submitted via the File Object that have yet to
complete. Once the last I/O completes, the File Object is no
longer in use and the EvtFileClose Event Processing Callback is
raised.

In general, this is why it makes sense to defer tearing down any
unique state for this open instance until the EvtFileClose Event
Processing Callback. This eliminates any races between tearing
down the open instance state and using the state in the other I/
O paths.

The EvtFileClose function prototype is as follows:

VOID
EvtFileClose(
 In WDFFILEOBJECT FileObject
);

Once again, we are not provided a WDF Request Object handle
in this callback, even though close operations also arrive at the
Framework as native I/O requests.

WDFFILEOBJECT Properties
In addition to the Event Processing Callbacks, the
WDF_FILEOBJECT_CONFIG structure supports the setting of the
following properties: AutoForwardCleanupClose and FileObject
Class.

Property: AutoForwardCleanupClose
Type: WDF_TRI_STATE

In general, create requests are ultimately completed by the
Functional Device Object (FDO) owner in the stack. Given that
the FDO owner completes the create request, it then makes
sense that the FDO owner would be responsible for completing
the accompanying native I/O operations for cleanup and close
notification.

A filter driver, on the other hand, typically does not play an
active role in create, cleanup, or close processing. The filter
driver may want to be notified of these events, but would not
complete the native I/O operations. Instead, the filter would
perform the necessary work and then pass the requests on to
the next lower driver.

(CONTINUED FROM PAGE 6)

The AutoForwardCleanupClose property tells the Framework
which default processing path to take for cleanup, close, and,
despite the name, create operations. If the property is set to
WdfFalse, the FDO based processing is chosen and the I/O
requests are completed by the Framework. If WdfTrue, the filter
driver processing is taken and the requests are passed on.
WdfDefault chooses the correct behavior based on target
device type.

Property: FileObjectClass
Type: WDF_FILEOBJECT_CLASS

The FileObjectClass property is overloaded and used to specify
two unrelated options. The first option is whether or not the
driver requires WDF File Object at all. By specifying a value of
WdfFileObjectNotRequired, the Framework will short circuit its
processing and raise the EvtDeviceFileCreate Event Processing
Callback with a NULL FileObject parameter.

This may seem like a very odd option and, in fact, it is! A typical
driver receiving standard create, cleanup, and close requests
would almost never set this option. However, there is a very
specific use case that is being addressed here. Namely, the
Framework must have a model for handling non-standard,
driver-generated create requests that do not contain valid
native File Objects. The O/S itself will never send these, but a
pair of cooperating drivers may leverage them to establish a
connection.

Assuming that a File Object is required, the next series of values
indicate optimizations that the Framework may take to facilitate

(CONTINUED ON PAGE 20)

WE KNOW WHO YOU ARE

You’re the guy on NTDEV who’s been asking
about how to call a user-mode function from
kernel-mode, right?

OK, maybe not. But in any case, you can
read all the articles ever published in The NT
Insider and STILL not learn as much as you
will in one week in our KMDF seminar. So
why not join us!

Next presentation:

Palo Alto, CA
28 April—2 May

For questions, contact an OSR seminar
coordinator at seminars@osr.com

http://www.osr.com/wdf.html
mailto:seminars@osr.com

Page 8
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

I n our years of experience debugging in the Windows
environment, one of the most useful debugging techniques

we’ve found involves the information we can collect from the
pool allocator in the kernel environment. Over time, Microsoft
has further improved the efficacy of this for debugging by
including ever more information with both the debugger tools
as well as by increasing the number of data structures described
in the public symbols.

In this article, we will provide a basic explanation of how pool
management in Windows works from the perspective of
someone debugging on the platform. Thus, our goal is not to
describe the nuances and details of exactly how the pool
manager works, but rather to describe how pool allocation
works vis-à-vis what we need to know to more effectively use
the debugger.

Types of Pool Memory
In the Windows kernel
environment, we have two
basic types of pool: paged pool
and non-paged pool.

Paged pool are blocks of
memory where the virtual
addresses have meaning, but
the mapping from virtual to
physical page may not be
defined. In a case where the
virtual address has no
corresponding physical
address, the data is stored in a
paging file. Like any other virtual address, if a virtual page is
accessed for which there is no corresponding physical page, a
page fault occurs and the Memory Manager will allocate a new
physical page, fetch the data from the paging file into the
physical page and then update the page table so that it points to
the correct physical page.

Paged pool is typically used for data structures that need not be
always resident in memory for correct operation; there is
generally more paged pool than non-paged pool and paged pool
has less impact on overall machine performance because it does
not lock down physical memory. For example, we do quite a bit
of file systems work and we routinely work with structures that
are only accessed at IRQL < DISPATCH_LEVEL. In such cases, the
data structures may be placed in paged pool.

Non-paged pool are blocks of memory where the virtual
addresses have meaning and the mapping of virtual to physical
page is defined. Thus, if a “non-paged address” is accessed and
the virtual-to-physical page is not defined, the Windows

Memory Manager will terminate system operation with the bug
check 0x50 (PAGE_FAULT_IN_NONPAGED_AREA).
Non-paged pool is typically used for data structures that must
be resident in memory for correct operation. For example, any
data that is needed to access the paging file (which is where
paged pool data may be stored) must be in non-paged pool.

Windows Pool Allocator
Regardless of the type of pool, Windows uses the same pool
allocation logic – it just maintains separate pools with different
characteristics.

Dynamic memory allocation is an essential part of most kernel
components as it provides a general framework for allocating
resources on demand and thus permitting considerable
flexibility in resource utilization. Indeed, the trend in Windows
has been to encourage the use of dynamically allocated

structures and discourage the
use of statically allocated
structures, as the former leads
to greater flexibility in terms of
implementation.

The core Windows OS provides
two key functions for utilizing
its dynamic memory allocator:

 ExAllocatePoolWithTag –
this function allocates blocks
of memory for use by a kernel
component, including a driver.

 ExFreePool – this function
frees a previously allocated block of memory to a kernel
component.

The Windows pool allocator splits allocation requests into two
categories – those that are small enough to use the small pool
allocator (some value less than PAGE_SIZE so that it makes
sense to fit multiple entries on a single page) and the large pool
allocator, which allocates blocks of memory in integral multiples
of PAGE_SIZE.

For large pool allocations, the actual allocation tracking
information is stored separately from the block of memory and
thus is handled completely differently. Most blocks of pool
memory allocated by drivers are typically much smaller than a
single page.

For allocations smaller than one page, the small pool allocator is
used to satisfy the request. For allocations of one page or more
they are allocated by the large pool allocator – in multiples of
PAGE_SIZE.

(CONTINUED ON PAGE 9)

ADVANCED WDF DRIVER
SEMINAR

Join Our Inaugural Presentation!

Palo Alto, CA 5-8 May

Phone: +1.603.595.6500
Email: seminars@osr.com

http://www.osr.com/advancedwdf.html
http://www.osr.com/advancedwdf.html
mailto:seminars@osr.com?subject=Seminar%20interest

Page 9
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

Pool Block (Small Pool Allocations)
Memory allocated by the small pool allocator consists of a
header, data region and special computed value (“canary”). See
Figure 1.

Note that the “canary” value follows the data region and
provides a mechanism for detecting buffer overwrite error.
While special pool can also be used to detect buffer overruns,
the canary technique is always active (beginning with Windows
Server 2003) and does not require consumption of two pages of
virtual address space to implement.

Aside: it is called a canary as an early warning sign of
an imminent problem. Coal miners would use canaries
as a form of “early warning sign” in coal mines, so
when the canary stopped singing the miners knew
something was wrong. http://www.wisegeek.org/what
-does-it-mean-to-be-a-canary-in-a-coal-mine.htm

When a canary overwrite is detected, Windows will raise a bug
check. This applies to all drivers in the system, not just those
drivers that are running under Driver Verifier.

The first portion of any block of pool memory is the
_POOL_HEADER structure, which defines the current layout of
the header used by the small pool allocator. Here is a current
version of it from a Windows 8 x64 box:

0: kd> dt nt!_POOL_HEADER
 +0x000 PreviousSize : Pos 0, 8 Bits
 +0x000 PoolIndex : Pos 8, 8 Bits
 +0x000 BlockSize : Pos 16, 8 Bits
 +0x000 PoolType : Pos 24, 8 Bits
 +0x000 Ulong1 : Uint4B
 +0x004 PoolTag : Uint4B
 +0x008 ProcessBilled : Ptr64 _EPROCESS
 +0x008 AllocatorBackTraceIndex : Uint2B
 +0x00a PoolTagHash : Uint2B

This pool header is used to keep track of the state of the each
individual block of pool memory within a given page.

(CONTINUED FROM PAGE 8)

Debugger “!pool” Command
The debugger has a special extension command for looking at a
given memory location to see if it exists within a block of pool.
This command – the !pool – command – will examine the entire
page of memory, looking to identify the pool block that contains
the given address.

If the address given is not a valid pool address, it will typically
display some sort of error condition, since the memory will not
be laid out in the proper format.

0: kd> !pool fffffa8016990040
Pool page fffffa8016990040 region is Nonpaged pool
*fffffa8016990000 size: 540 previous size: 0 (Allocated) *Thre
 Pooltag Thre : Thread objects, Binary : nt!ps
 fffffa8016990540 size: 30 previous size: 540 (Allocated) AlSe
 fffffa8016990570 size: 210 previous size: 30 (Allocated) ALPC
 fffffa8016990780 size: 880 previous size: 210 (Allocated) LSfR

Note that the allocated block in which the address given to !pool
was given is indicated by the * at the beginning of the line.

The debugger extension exploits its knowledge of the pool block
layout to analyze the page. Each header contains information
that is sufficient to “walk” the list of pool allocations for that
entire page, with each byte on the page either being part of the
pool manager meta-data (header or canary) or the data region
as well as some padding.

Note that the Windows small pool allocator guarantees the
memory returned will be on an eight byte boundary. There are
parts of Windows that still exploit this knowledge and
sometimes they use the low two bits of an address for storing
information – but those bits are not really part of the memory
address.

When a driver allocates a block of pool, the pool allocator will
attempt to find an existing block of pool of the correct size. This
is done by maintaining lists of free pool regions. Typically, this
has been implemented by using the data region as a doubly-
linked list pointer so that the memory can be stored on a list of
the relevant size – though we note that nothing requires this
implementation and the details of the pool allocator do change
from release to release.

(CONTINUED ON PAGE 22)

Figure 1— Small Pool Allocations

http://www.wisegeek.org/what-does-it-mean-to-be-a-canary-in-a-coal-mine.htm
http://www.wisegeek.org/what-does-it-mean-to-be-a-canary-in-a-coal-mine.htm

Page 10
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

I n our debugging seminars, we make a big show of telling our
students to not only run !analyze –v when looking at a

system crash, but to also actually read the output of the
command. Note that I didn’t say to skim it casually. Nor did I say
to glaze over while the output flies by (Hmmm…I wonder if they
put more snacks out?). But actually read and understand what
the bugcheck analysis says. Ultimately, the bugcheck code and
description are the reason for the system crash, so if you don’t
start out with a complete understanding of the !analyze –v
output then you’re hopeless from the start.

It’s my firm belief in this step that makes me want to claw the
text off the screen when I see the description accompanying the
all too common PAGE_FAULT_IN_NONPAGED_AREA bugcheck:

0: kd> !analyze -v

* *
* Bugcheck Analysis *
* *

PAGE_FAULT_IN_NONPAGED_AREA (50)
Invalid system memory was referenced. This cannot be
protected by try-except, it must be protected by a Probe.
Typically the address is just plain bad or it is pointing
at freed memory.

In order to understand what my problem is with this
description, let’s break it down into individual pieces:

Invalid system memory was referenced.

This is absolutely correct, no problem here. The
PAGE_FAULT_IN_NONPAGED_AREA bugcheck only ever occurs
when you dereference an invalid kernel address. The Windows
Page Fault Handler has to assume that if an invalid kernel
address has been dereferenced something seriously bad is going
on, so it has no other choice than to crash the machine.

This cannot be protected by try-except,

Agreed! As I mentioned, the Page Fault Handler simply
bugchecks if an invalid kernel address is dereferenced. This is
different than if an invalid user address is dereferenced. In that
case, the Page Fault Handler raises an exception that can be
caught with a __try/__except block. This allows the O/S and
drivers to be resilient to malicious or poorly written applications
that supply invalid user buffers to I/O operations.

it must be protected by a Probe.

And so it begins…This statement is a vague half-truth, which
makes it all the more annoying. If it was all wrong I could simply
tell you to ignore it. If it was all correct I wouldn’t have to bother
writing this article and I could be outside making snow angels.

For starters, the Probe that the sentence is referring to is in fact
two different functions: ProbeForRead and ProbeForWrite. This
would lead you to believe that you could avoid dereferencing
invalid kernel memory if you called one of these functions
before dereferencing the pointer, right? Sort of! From the docs:

The ProbeForRead routine checks that a user-mode buffer
actually resides in the user portion of the address space, and is
correctly aligned.

And:

The ProbeForWrite routine checks that a user-mode buffer
actually resides in the user-mode portion of the address space, is
writable, and is correctly aligned.

All these APIs really do is make sure that a buffer pointer is a
user mode pointer. If the pointer is a kernel mode pointer, they
raise an exception that the caller can catch. Calling these APIs
before dereferencing any pointer supplied by user mode is a
required step in buffer validation, otherwise you run the risk of
dereferencing a kernel mode address provided by a user mode
caller and generating a PAGE_FAULT_IN_NONPAGED_AREA
bugcheck.

In any other context these APIs make no sense for a driver. If
you protected all of your kernel mode references with a Probe
you would never actually dereference a kernel mode pointer.
This would surely prevent you from dereferencing invalid kernel
memory, so I suppose the statement isn’t entirely inaccurate,
but your driver wouldn’t be very useful.

Typically the address is just plain bad or it is pointing
at freed memory.

The situation has returned to normal. The bugcheck is ultimately
caused by an invalid kernel pointer, so you have all of the usual
reasons to look out for when it comes to why the pointer might
be bad. Sure, it could be that you didn’t call a Probe function on
a pointer from a buggy or malicious application, but in general
this guidance will point you in the right direction.

Analyst’s Perspective is a column by OSR Consulting Associate,

Scott Noone. When he’s not root-causing complex kernel issues,

he’s leading the development and instruction of OSR’s Kernel

Debugging Seminar. Comments or suggestions for this or future

Analyst Perspective columns can be addressed to ap@osr.com

Follow us!

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 11
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

By Tim Roberts, community contributor

I nstallers. The mere word can strike an icy cold stab of fear
into the hearts of driver developers. It’s not clear why that

should be the case; after all, installers run in the relatively safe
comfort of user mode, where the APIs are well developed, there
are few sharp edges, and the penalty for mistakes is
smaller. However, I understand the feeling. I avoided installers
as if they were infectious, until I finally decided to dig in and see
what the fuss was about.

In this article, I’m going to try to alleviate any fears you may
have about driver installers, and describe for you a relatively
simple but complete mechanism for installing drivers. One of
the problems with installers is that there are a lot of
options. I’m not claiming my method is the best one, but it is
one that has worked for me for many years.

Which Driver Type?
There are a number of different types of drivers, and those
driver types require different types of installers. A partial list
might include:

1. PnP drivers
2. Device filter drivers
3. Class filter drivers
4. Legacy drivers

PnP drivers require an INF file. That’s the most common type of
driver (I assert without evidence), so that’s the type I’m going to

focus on in this article. I will make some comments about class
filter drivers and legacy drivers towards the end.

There are several distinct steps required in order to get a driver
package installed and operational. In this article, I’m going to
divide the process into three steps. To make things more
interesting, I will discuss those steps in reverse order.

Installation
The final part of the driver installation process is that part we
usually think of as “installation”. It is the process of copying files
into their operational locations (\Windows\Inf,
\Windows\System32, and \Windows\System32\Drivers),
creating services, making registry entries, loading the driver, and
calling the driver’s initial entry points.

For PnP drivers, this part of the installation process is handled
entirely by Device Manager, as directed by the INF file. When
some bus driver reports the creation of a PDO to the PnP
Manager, and that PDO has a device type that is not already
known to the system, Device Manager asks for its hardware ID,
and goes on a treasure hunt to find a driver to handle it. It first
looks through all of the INF files that have previously been
installed in the \Windows\Inf directory. If there is no match
there, it searches through the driver store, which contains the
pre-installed driver packages.

When Device Manager finds a matching driver package, it
“executes” the INF file, copying files into the System32

(CONTINUED ON PAGE 12)

OSR IS HIRING!
Have a Passion for OS Internals?

OSR is hiring one or more Software Development Engineers to implement, test and debug
Windows kernel mode software.

We’re looking for a very talented individual (or two) to grow into valued contributors to the OSR
engineering team, our clients, and the community.

Do you need to be a Windows internals guru? No—we’ll help you with that—but you DO have to
LOVE operating system internals. It’s what we live and breathe here at OSR.

We’ve found such folks to be a rare breed, so if this is YOU or someone you know, get in touch
with us and tell us why we can’t afford NOT to hire you.

See www.osr.com/careers for more detail.

http://www.osr.com/careers

Page 12
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

<xml version="1.0" >
 <dpinst>
 <!-- English -->
 <language code="0x0409">
 <dpinstTitle>XYZ Sonic Screwdriver Driver Installation</dpinstTitle>
 <welcomeTitle>Welcome</welcomeTitle>
 <welcomeIntro>Welcome to the XYZ Sonic Screwdriver Driver Setup program. This program will install the XYZ Sonic Screwdriver
 Drivers on your computer.</welcomeIntro>
 <installHeaderTitle>Please wait while Setup finishes installing the driver.</installHeaderTitle>
 <finishTitle>Setup complete</finishTitle>
 <finishText>Setup has finished installing the Sonic Screwdriver Drivers.</finishText>
 </language>
 <legacyMode/>
 <forceIfDriverIsNotBetter/>
 <deleteBinaries/>
 <suppressEulaPage/>
 <enableNotListedLanguages/>
 <suppressAddRemovePrograms/>
 </dpinst>

directory, creating services, registering DLLs, making registry
entries, running coinstallers, then loading the driver into
memory and executing it.

In order for Device Manager to do its job, the driver package has
to be pre-installed into the driver store for the PnP Manager to
find. That is the next stop in our backwards tour of the
installation process.

Pre-Installation
Pre-installation is the process of copying a driver package to the
“driver store”. On Windows XP, the driver store is in
\Windows\System32\Drvstore. On Vista and later systems, the
driver store is in \Windows\System32\DriverStore.

The key API in this process is SetupCopyOEMInf. You can call
SetupCopyOEMInf from your own application, or you can use
“devcon dp_add”. However, given that you can’t ship the
“devcon” utility with your product, the most convenient option
is to use the DPInst tool that is included in the WDK in
redist\difx\DPInst. You are allowed to redistribute the DPInst
executables in your own installer packages.

DPInst is a narrowly focused application. In its simplest use
case, it displays a welcome dialog, then calls SetupCopyOEMInf
on every INF file it finds in the same directory as the executable.
It then calls UpdateDriverForPlugAndPlayDevices, which forces
Device Manager to take another look around for devices that
need drivers. In some cases, this is exactly what you need. If
you need to do something a bit different, DPInst’s activities can
be customized through the use of an XML file. For example, you
can have DPInst display an end-user license agreement, you can
customize the welcome and finish messages, you can customize
the icon, and you can add a bitmap to the wizard dialog it
displays. DPInst even registers an uninstaller for you, listed in
Control Panel as “Windows Driver Package” with your
hardware’s description. It’s important to note that you must

(CONTINUED FROM PAGE 11) use the 64-bit DPInst on a 64-bit system and a 32-bit DPInst on a
32-bit system.

The DPInst.xml file needs to be in the same directory as the
DPInst executable. See the example in Figure 1.

At the bottom, after the <language> block, you’ll see a list of
standalone tags selecting various DPInst options. All of these
options have equivalent command-line switches, if you prefer to
go that route. The <legacyMode/> switch is important; without
it, DPInst will not handle non-WHQL-signed packages. The
<deleteBinaries/> options tells the DPInst uninstaller to remove
any binaries it created when it installed. The
<suppressAddRemovePrograms/> switch tells DPInst not to
create an uninstaller at all. I do that only because I have my
own installer handle that step (which you will see shortly), and it
confused users to have two entries.

For DPInst to do its job, it needs to be in the same directory as
the root of your driver package (along with DPInst.xml). For
testing, it’s easy enough to copy your driver package onto a test
system and run DPinst by hand. You might even be able to
gather everything up into a zip file and distribute that to
members of your own team. However, it should be clear that
what has been described here does not provide the installation
experience that most end users want. Users expect to have a
single executable that does the whole job. For that, we move
back in time one more step.

Pre-Pre-Installation
Pre-pre-installation is what I call the step of getting your driver
package (along with DPInst) loaded on to a client’s computer,
and then running DPInst to do a pre-installation. In the spirit of
full disclosure, you need to know that the term “pre-pre-
installation” is one that I made up for this article. Don’t go
searching for it.

(CONTINUED ON PAGE 13)

Click to Expand

Figure 1

http://insider.osr.com/2014/code/driver_installers_fig1.html
http://insider.osr.com/2014/code/driver_installers_fig1.html

Page 13
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

The pre-pre-installation process is just a normal application-style
installation, and can be done using traditional installer
tools. Many people use WiX, which is an XML-based utility that
builds Microsoft Installer (MSI) files. Some people use
InstallShield. I happen to use NSIS, the Nullsoft Scriptable
Installer System, at http://nsis.sourceforge.net. It is an open
source command-line tool that compiles a script into an
executable.

Whichever tool you use, your pre-pre-installer has two basic
jobs: copy the driver package onto disk, and run DPInst. In this
section, I will show you a simple NSIS script to preload and pre-
install a driver package.

One of the things that makes the pre-pre-install script tricky is
the 32-bit/64-bit problem. You need to decide whether you
want two separate installers (one for each bittedness), or one
installer with both drivers. For mostly historical reasons, I tend
to build my driver packages with one INF and two
subdirectories. However, the samples in the WDK have all gone
the other direction, where you get one driver package, complete
with INF, per architecture. The script I’m about to demonstrate
assumes this layout.

The NSIS script language is an odd beast, somewhere between
batch files and the Basic language. It has some rather primitive
constructs that derive from being a single-pass compilation
process. I’ll point those out when they come up.

(CONTINUED FROM PAGE 12)

See Figure 2 (P. 14) for a complete NSIS script to create a
moderately-featured installer for fictional “Sonic Screwdriver”
from the XYZ Company.

The script begins with a set of global declarations, followed by a
set of sections, each of which has instructions for a particular
part of the installer. It is possible to create a script with multiple
selections that presents a menu to the user, allowing them to
choose which subcomponents to include. I have not done that
here.

The initial section declares the installer name, the dialog
caption, and the default install directory name (in this case,
\Program Files\XYZ\SonicScrewdriver). $PROGRAMFILES is an
NSIS variable that expands to the proper Program Files
directory. (Because NSIS creates a 32-bit executable, this
actually expands to “Program Files (x86)” on a 64-bit system.)
The OutFile statement then defines the name of the executable
that NSIS will create.

After that, we start the main installation section. The first thing
I do here is check the registry to see if a previous run of this
installer registered an uninstaller. If it did, I run the uninstaller
to clear out any previous instances of the driver package. End-
users expect an installer to be able to upgrade itself in place; I
discovered that repeated instructions to manually run the
uninstaller first were futile.

After that, we begin the process of copying files. The
SetOutPath statement tells the installer where the files should
go. We could have additional SetOutPath statements to create
a directory tree. For example, when I have a driver package that
includes both 32-bit and 64-bit drivers in a single package, I use
statements similar to the following to place the files accordingly:

(CONTINUED ON PAGE 14)

OSR CUSTOM SOFTWARE DEVELOPMENT
I Dunno...These Other Guys are Cheaper...Why Don’t We Use Them?

Why? We’ll tell you why. Because you can’t afford to hire an inexperienced consultant or
contract programming house, that’s why. The money you think you’ll save in hiring inexpensive
help by-the-hour will disappear once you realize this trial and error method of development has
turned your time and materials project into a lengthy “mopping up” exercise...long after your
“inexpensive” programming team is gone. Seriously, just a short time ago, we heard from a
Turkish entity looking for help to implement a solution that a team it previously hired in Asia
spent two years on trying to get right. Who knows how much money they spent—losing two
years in market opportunity and still ending up without a solution is just plain lousy.

You deserve (and should demand) definitive expertise. You shouldn't pay for inexperienced
devs to attempt to develop your solution. What you need is fixed-price solutions with guaranteed
results. Contact the OSR Sales team at sales@osr.com to discuss your next project.

http://nsis.sourceforge.net
mailto:sales@osr.com

Page 14
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

 SetOutPath $INSTDIR\32
 File “drv\32\driver.sys”
 File “drv\32\helper.dll”
 … other 32-bit files …

 SetOutPath $INSTDIR\64
 File “drv\64\driver.sys”
 File “drv\64\helper.dll”
 … other 64-bit files …

One of the tricky things to keep track of is whether a particular
directive applies to the build machine or the eventual client
machine. For this particular example, I’m assuming we have
separate driver packages for 32-bit and 64-bit. In that case, I
only need to copy one package onto any given client. The
IfFileExists statement checks to see whether a SysWOW64
directory exists; if it does, then this is a 64-bit machine, and so I
load the 64-bit driver package. The conditional directives in
NSIS are not modern structured programming constructs. The
way ”if” works in NSIS is if the condition is true (in this case, if
$WINDOWS\SysWOW64* exists), control jumps to the
statement given by the 3rd parameter. If the condition is false,
control jumps to the statement given by the 4th parameter. The
statement can be specified as a signed integer (+3 meaning “skip
to the 3rd line following this one), or with a named label. In this
case, the 0 means to fall through to the next line if t he directory
exists, otherwise jump to the label else1.

Each File directive identifies a file to be copied into the current
SetOutPath directory. The directive specifies the file’s location
on the disk where the compilation is being done. The file will
keep the same name, although you can specify a new name if
you wish.

After copying the files for the driver package and the
appropriate WDF co-installer, I add the DPInst.xml file to the
package. That completes the file list.

The next step is to run DPInst itself (on the client system). This
is accomplished by the ExecWait statement. As the name
implies, the script will not continue until the DPInst command
completes.

After that, all that’s left is to create and register an
uninstaller. We specify the uninstaller’s name with the
WriteUninstaller directive, and we specify the actions it has to
take in the separate “Uninstall” section. All we have to do is run
DPInst with the “/u” parameter, to have it undo all the magic it
did, and then delete any files and directories we created, and
any registry keys we created.

(CONTINUED FROM PAGE 13)

(CONTINUED ON PAGE 15)

Name "XYZ Sonic Screwdriver Driver"

Caption "XYZ Sonic Screwdriver Driver"

InstallDir "$PROGRAMFILES\XYZ\SonicScrewdriver"

DirText "This will install the XYZ Sonic Screwdriver drivers on your

 computer. You may choose a directory to hold the driver files:"

OutFile "setup_ssd.exe"

; The stuff to install

Section "Driver"

 ; If the uninstall key exists, run DPInst to uninstall.

 ReadRegStr $0 HKLM Software\Microsoft\Windows\CurrentVersion

 \Uninstall\xyzsonic" \ "UninstallString"

 StrCmp $0 "" after

 ; We always put double-quotes in path, so $0 starts with one.

 StrCpy $1 $0

 loop:

 IntOp $1 $1 - 1

 StrCpy $2 $0 1 $1

 StrCmp $2 "\" 0 loop

 StrCpy $0 $0 $1

 StrCpy $0 '$0\DPInst.exe" /q /u $0\xyzsonic.inf"'

 DetailPrint "Uninstalling old driver"

 DetailPrint $0

 ExecWait $0

after:

 ; Copy the files.

 SetShellVarContext all

 SetOutPath $INSTDIR

 IfFileExists $WINDIR\SysWOW64*.* 0 else1

 File "\ddk\7600\redist\DIFx\DPInst\EngMui\amd64\DPInst.exe"

 File "..\Lag\amd64\xyzsonic.sys"

 File "..\Lag\amd64\xyzsonic.inf"

 File "..\Lag\amd64\xyzsonic.cat"

 File "..\Lag\amd64\WdfCoInstaller01009.dll"

 Goto endif1

 else1:

 File "\ddk\7600\redist\DIFx\DPInst\EngMui\x86\DPInst.exe"

 File "..\Lag\x86\xyzsonic.sys"

 File "..\Lag\x86\xyzsonic.inf"

 File "..\Lag\x86\xyzsonic.cat"

 File "..\Lag\x86\WdfCoInstaller01009.dll"

 endif1:

 File "DPInst.xml"

 ; Install the driver.

 ExecWait '"$INSTDIR\DPInst.exe" /lm'

 ; Create the uninstaller.

 WriteRegStr HKLM

"Software\Microsoft\Windows\CurrentVersion\Uninstall\xyzsonic" \

 "DisplayName" "XYZ Sonic Screwdriver"

 WriteRegStr HKLM

"Software\Microsoft\Windows\CurrentVersion\Uninstall\xyzsonic" \

 "UninstallString" '"$INSTDIR\Uninstall.exe"'

 WriteUninstaller "Uninstall.exe"

SectionEnd ; end the section

Section "Uninstall"

 SetShellVarContext all

 DeleteRegKey HKLM

"Software\Microsoft\Windows\CurrentVersion\Uninstall\xyzsonic"

 ExecWait '"$INSTDIR\DPInst.exe" /u xyzsonic.inf'

 Delete $INSTDIR\DPInst.exe

 Delete $INSTDIR\DPInst.xml

 Delete $INSTDIR\xyzsonic.sys

 Delete $INSTDIR\xyzsonic.inf

 Delete $INSTDIR\xyzsonic.cat

 Delete $INSTDIR\WdfCoInstaller01009.dll

 Delete $INSTDIR\Uninstall.exe

 RMDir $INSTDIR

SectionEnd

Click to Expand

Figure 2

http://insider.osr.com/2014/code/driver_installers_fig2.html
http://insider.osr.com/2014/code/driver_installers_fig2.html

Page 15
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

This script can be extended in an infinite number of ways. The
NSIS package provides a large number of samples and plugins to
perform additional functions, most of which don’t really apply in
the driver world. It is possible to pass parameters to the
“makensis” command line, similar to pre-processor variables on
the C compiler command line. For example, I have one script
that can build either a “checked” or a “free” installer, based on
the contents of a command-line parameter.

Other Driver Types
As I noted at the beginning, the above description applies to PnP
drivers. Other types of drivers have different
requirements. Legacy drivers and class filter drivers, for
example, can both be installed using an INF with a
[DefaultInstall] section. In that case, you can use a very similar
NSIS script to copy a driver package without DPInst, and then
execute RunDll32 to run that section:

 rundll32 setupapi.dll,InstallHinf DefaultInstall 132
c:\install\mydrv.inf

However, this mechanism has the huge disadvantage that it
does not run the WDF co-installer. This is a non-PnP installation,
and co-installers only run for a PnP installation. This problem
was described in The NT Insider back in March of 2008 (see the
article http://www.osronline.com/article.cfm?article=446). If
your driver package needs to run on a system that might have
an older version of KMDF than the one you need, you will have
to supply an application. Device filter drivers also generally
require a custom application, because it is necessary to identify
the exact hardware IDs to be filtered. Even in these cases,
however, one could have an NSIS script copy the driver file plus

(CONTINUED FROM PAGE 14)

the installer application, and then run the installer.

Conclusion
I hope this article has alleviated some of the horror you might
have felt towards driver installations. Like most computer tasks,
installation becomes much more manageable when you chop it
up into smaller pieces and tackle those pieces.

Tim Roberts has been wrangling computers from mainframes to
micros for 40 years, and has been part of the Windows driver
world since Windows 3.0. An 18-year MVP, Tim is a principal in
P&B, a consulting company providing custom hardware and
software solutions to difficult computing situations. Tim can be
reached at timr@probo.com.

TRANSPARENT, FILE ENCRYPTION FOR WINDOWS
How Hard Can it Be?

Several commercially shipping products are a testament to the success of OSR’s most recent
development toolkit, the Data Modification Kit. With the hassle of developing transparent file
encryption solutions for Windows on the rise, why not work with a codebase and an industry-
recognized company to implement your encryption or other data-modifying file system solution?

Visit www.osr.com/dmk.html, and/or contact the OSR sales team:

Phone: +1 603.595.6500
Email: sales@osr.com

OSR USB FX2 LEARNING KIT

Don’t forget, the popular OSR USB FX2
Learning Kit is available in the Store at
www.osronline.com.

The board design is based on the well-known
Cypress Semiconductor USB FX2 chipset
and is ideal for learning how to write
Windows device drivers in general (and USB
specifically of course!). Even better, grab the
sample WDF driver for this board, available
in the Windows Driver Kit.

Follow us!

http://www.osronline.com/article.cfm?article=446
mailto:timr@probo.com
http://www.osr.com/dmk.html
http://www.osr.com/dmk.html
mailto:sales@osr.com
http://www.osronline.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 16
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

mystic project files and compile and link your code from the
command line. Today, Windows driver development is fully
integrated with Visual Studio.

At the current time (January 2014, Windows 8.1 was released a
few months ago), driver development is supported in Visual
Studio 2012 and Visual Studio 2013, Professional Edition or
better. That means the “free for anybody to use” version of
Visual Studio (Visual Studio Express Edition, or whatever they’re
calling it now) cannot be used for driver development. So you
will need to buy an MSDN and Visual Studio subscription. One
very cool thing to note, however, is that you can use the 90-day
trial versions of Visual Studio Professional 2013 and Visual
Studio Ultimate 2013 that are available and free to download.

Once you have Visual Studio purchased and installed on your
development machine, you’ll also need to install the Windows
Driver Kit (WDK) add-in that supports driver development. This
is a separate, but free (yay!), download from Microsoft (no
MSDN subscription necessary). Search “Get Windows Driver
Kit” using your search engine of choice.

Visual Studio and the WDK together provide everything you
need to create driver projects, and to compile, link, and even
debug Windows drivers. After you’ve successfully installed

(CONTINUED FROM PAGE 4)

Visual Studio and the WDK, you can very easily build a simple
driver demo project. You don’t even need any hardware! Just
select “New Project” and within Visual C++ select the Windows
Driver project category. Within this category select Kernel
Mode Driver (KMDF). Click OK and Visual Studio will generate a
simple starter or demo driver project for you that doesn’t
require any specific hardware. This driver will successfully build,
and can even be installed on a test machine. Yup, it really is that
simple.

Ah, test machines. That’s probably something we should
discuss. Driver development on Windows requires two
Windows systems. One system where you run Visual Studio, do
your development, and run the debugger. And a second,
separate, system on which you run your driver. The Windows
kernel debugger, running on your Development System,
controls your Target System (where the driver you’re developing
is running) via a remote connection that can be either a serial
port, 1394, the network, or even in some cases USB. See Figure
1 (P. 17).

If you think about it, this makes good sense: Driver and
hardware errors can quite easily destabilize or even crash a
system. So you certainly don’t want to be running your new and
potentially buggy driver on the same system on which you’re
editing your source code files and doing your development.

In many cases, the second system can be a virtual machine.
Using a virtual machine is acceptable when you’re writing a

(CONTINUED ON PAGE 17)

Windows Internals 6th Edition -- Part 1
(Russinovich, Solomon, Ionescu) (Microsoft Press)

T his is the basic description of Windows OS
Architecture. Everyone in the world of Windows has read it

at some time. When you read the following chapters, you may
just skip the exercises shown or try a few if they sound
interesting to you… it’s your choice.

 Chapter 1: Concepts and Tools (whole chapter)

 Chapter 2: System Architecture (whole chapter)

 Chapter 3: System Mechanisms (Up to but not including
section entitled Advanced Local Procedure Calls(ALPC))

Windows System Programming 4th Edition
(Johnson M. Hart) (Addison-Wesley Microsoft Technology
Series)

I f you’re going to write device drivers, it probably makes sense
to understand something about how to write Windows

programs. If you’ve worked on Unix, and you’ve never written a
program on a Windows system, this book will give you a lot of
the information you’ll need.

 Chapter 1: Getting Started With Windows (whole
chapter)

 Chapter 2: Using the Windows File System and Character
I/O (whole chapter)

 Chapter 4: Exception Handling (whole chapter)

 Chapter 14: Asynchronous Input/Output and Completion
Ports

Page 17
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

driver (such as a filter driver or a file system) that doesn’t
directly access any hardware. But if your driver talks to real
hardware, you’ll need a real, physical, second machine to use as
your Target System. This is true even when you’re building a
driver for something like a USB device, when the VM host you’re
using allows you to assign access to the device exclusively to a
given VM.

We mentioned the Windows kernel debugger. This debugger is
named WinDbg (which almost everyone pronounces as “wind
bag”, by the way). The debugger is included in the Windows
Driver Kit and is automatically installed on your system when
you install the WDK. It’s the debugger you’ll use as part of
developing and testing your driver. It’s very similar to the user-
mode debugger in Visual Studio, and has most of the same
features.

There are several options available for using WinDbg for
debugging your driver. One option is to use WinDbg directly
within Visual Studio, through the interface provided by the
WDK. While this pretty much works, here at OSR we don’t
recommend this. Our experience is that trying to use WinDbg
from within Visual Studio creates more complications than it’s
currently worth. Instead, we recommend that you run WinDbg
directly from your development machine, outside of Visual
Studio. This allows you to use Visual Studio for driver
development, which is what it’s best at, and use WinDbg directly
for debugging, which is what WinDbg is best at.

(CONTINUED FROM PAGE 16)

DESIGN AND CODE REVIEWS
When You Can’t Afford Not To

Have a great product design, but looking for validation before bringing it to your board of
directors? Or perhaps you’re in the late stages of development of your driver and are looking to
have an expert pour over the code to ensure stability and robustness before release to your
client base. Consider what a team of internals, device driver and file system experts can do for
you.

Contact OSR Sales — sales@osr.com

Before you can use WinDbg to debug your driver, you’ll need to
enable kernel debugging on the target system. Fortunately, it’s
easy and very well documented (thank you, WDK doc writers).
Search “Setting Up Kernel-Mode Debugging Manually” in your
search engine of choice for the steps.

One quick note about debugging. Do not, under any
circumstances, try to develop your driver without setting up
WinDbg. For some reason, there are folks who’ve been fooled
into thinking they can use something like the Microsoft
DebugView utility, which allows DbgPrint statements (the kernel
-mode equivalent of printf or OutputDebugString) from your
driver to be viewed on your system, as their sole tool for driver
development. While DebugView can be useful at times, we can
guarantee that it is no substitute for having a debugger that
allows you to set breakpoints, single step, and change the
contents of structure fields and local variables. While setting up
WinDbg for the first time can sometimes be annoying, we
promise you it’ll be worth your effort in the long run. Yay,
WinDbg!

The final thing you’ll need are the Windows Driver Kit Samples.
These are example drivers, provided by Microsoft, that
demonstrate how to write drivers of various kinds. They’re just
like the typical sample code you download from MSDN: They
are very useful and highly instructive, even if some of the code
provided isn’t always exactly “the best.” Samples are provided
for all sorts of hardware drivers, filter drivers, and software-only
drivers. Heck, they even give you the source code to a few of
the drivers that are part of the Windows OS… including sources
for the FAT file system.

The samples are available as a separate download from
Microsoft, and as with the WDK no MSDN subscription is

(CONTINUED ON PAGE 18)

Development

System

(run VS and

WinDbg here)

Target System

(run your buggy

driver here) Debugger Connection

Figure 1— Basic Windows Driver Development Environment

mailto:sales@osr.com

Page 18
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

required. Search “Windows hardware development samples”
from your search engine of choice. You can download specific
samples individually, or you can download the entire ZIP archive
(about 100MB when this was written, including more than 160
sample drivers). We recommend you download the complete
archive. Take your time and look through the samples. This will
be time well spent.

So… now you have the background info you need, and you have
all the stuff you need to develop Windows drivers. What’s the
next step?

What Driver Model to Use
The actual development of a Windows driver starts with
choosing what “driver model” to use for your driver’s
implementation. Many folks find this step confusing. A driver
model is an overall driver organization, including a set of APIs
and entry points, which you’ll use when you write your code.
Unlike some other operating systems that support a small
number of driver models (“block” and “character”, for example)
Windows has a wide number of driver models. The best driver
model to choose is based on as many as three things. These
are:

 The type of driver you’re writing: Hardware device, filter, or
some other kind.

 If you’re writing a driver for a hardware device, the
category (storage controller, sound card, graphics adapter,
network card) of device.

 Developer preference

Now hear this: The choice of a driver model is the most
important decision you’ll make about how your driver will be
developed. And it’s a place where many people make the
wrong decision and “go off the rails” – making their project
much harder than it needs to be. So take some time to make
this decision. Don’t simply Google around and find some trash
example lying on a web site somewhere and start to hack it.
Make the decision thoughtfully.

General Purpose Models
Broadly speaking, there are two Windows driver models that
apply for general use, and some Windows driver models that
apply to specific devices. For example, if you’re writing a driver
for a local area network card, Windows has a specific model that
is tailored specifically for this use and makes it maximally
convenient to implement this type of driver. Likewise, if you’re
writing a driver that supports streaming audio or streaming
video, Windows has a specific model for these types of drivers.
These are only two simple examples. Windows has specific
models for lots of other device types as well.

(CONTINUED FROM PAGE 17)

Lacking a specific model for your device type, you can use one of
the general-purpose models. The first general-purpose model is
the Windows Driver Model (WDM). WDM is the old, historic,
model for writing Windows drivers. Nobody should use this
model anymore for writing new Windows drivers. Seriously.
Nobody. It’s hard to use and filled with “traps” that have
evolved over years to support backward compatibility
guarantees. Trying to write a new WDM driver in the 21st
Century will do nothing but make you hate life. Don’t do it.
Enough said?

Much preferred over WDM is the Windows Driver Foundation
(WDF). This is the second general-purpose driver model that
Windows supports. WDF is a modern, pleasant, and (dare I say
it) almost easy to use method for writing Windows drivers.
Unless there’s a specific model that Microsoft recommends for
the device, filter, or software-only driver you need to write,
you’ll want to use WDF.

One interesting thing about WDF is that it actually comes in
three flavors, called Frameworks:

 Kernel Mode Driver Framework – KMDF

 User Mode Driver Framework V1 – UMDF V1.x

 User Mode Driver Framework V2 – UMDF V2.0 (only applies
to Windows 8.1 and later)

KMDF is the Kernel Mode Driver Framework. This is the model
you’ll almost certainly want to use now and in the near future
for any general-purpose Windows driver development project.

You’ll notice that there are two WDF Frameworks that allow you
to write drivers in user-mode. Writing drivers in user mode is
good, because if there’s a bug in your driver (let’s say, you
deference a null pointer) your user-mode driver won’t crash the
system the way it would if you wrote your driver in kernel
mode. That’s certainly a very good thing, and contributes to
nothing but customer satisfactions. So, why didn’t we
recommend using UMDF for writing your drivers?

Using UMDF today is a problem. UMDF V1 is the older model.
It’ll support devices running on Windows versions as old as
Windows XP. But UMDF V1 uses an odd, difficult, programming
pattern that’s based on COM (yes, the Component Object
Model… that COM). Add to that the fact that UMDF V1 has
more or less been put in “end of life” status by Microsoft, and
you get a model that most people will want to avoid.

UMDF V2.0 is actually a terrific driver model. It uses 99% the
same syntax as KMDF, but it runs in user mode, thus
contributing to overall system stability. So why don’t we
recommend using UMDF V2.0 today? Because UMDF V2.0 is
currently only supported on Windows 8.1 or later. To be
absolutely clear, this means that if you write a UMDF V2 driver,
that driver can only be installed on systems that are running
Windows 8.1 or more recent versions of Windows. In short,

(CONTINUED ON PAGE 19)

Page 19
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

unless you only need to support Windows 8.1 or more recent
systems, UMDF V2 isn’t really a viable choice. On the other
hand, if you do only need to support Windows 8.1 or later (I
don’t know, maybe you’re writing a driver for some sort of
embedded system) then UMDF V2.0 could be a very good choice
indeed.

Choosing the Best Model for Your Project
Confused? It wouldn’t be surprising if you are. We told you
many people find this driver model stuff confusing. Fortunately,
there are some simple rules that can help you decide the best
driver model for your use. Here are those rules:

 Writing a driver for a hardware device? Check the
Windows Hardware Certification Requirements for the type
of device that you’ll be supporting. To do this, search for
“Windows Hardware Certification Requirements: Devices”.
If the type of device you’ll be supporting is listed, the
Certification Requirements document will almost always
specify the driver model you must use.

Note that this guidance applies even if you don’t plan to
apply for Windows Hardware Certification for your device
and driver. The Certification Requirements will almost
always point you in the direction of the best, easiest, most
modern, and most supportable driver model that applies to
your type of device.

 Writing a filter driver? A filter driver in Windows is a type
of driver that monitors I/O operations going to a given
device/driver in the system and intercepts those I/O
operations. The purpose for intercepting those I/O
operations might be to track them, measure them, or
modify them. If you’re writing a filter for file systems (like
for an antivirus product) or networks (such as you would
write for a firewall product), there are specific driver
models defined for these uses.

 Writing a software-only driver? For example, maybe you
need to write a driver that collects data in kernel-mode. In
this case, you probably want to write a software-only KMDF
driver. Using what’s called the “legacy NT model” is also a
good option. But from the viewpoints of your general
knowledge and ease of support, KMDF is probably going to
be the right choice.

 Are you writing a file system? Stop reading now. You
almost certainly do not want to write a Windows file
system. It’s really difficult. We know, because it’s one of
the things we’ve done over the years here at OSR. Send us
email. We’ll see if we can talk you out of it, and if not we’ll
point you in the right direction. Seriously. No charge.

(CONTINUED FROM PAGE 18)

 Neither of the previous steps pointed you to a specific
model. Do you need to support systems older than
Windows 8.1? If you only need to support Windows 8.1 or
later, the best model for you to use is probably UMDF 2.0.

If you need to support systems older than Windows 8.1,
then your best choice of driver model is probably KMDF.

There are a number of factors that contribute to the decision of
which driver model is best for you. You can read more about
this on MSDN. Search for the page titled “Choosing a driver
model”. For the reasons we described above, we recommend
for the present time you ignore Microsoft’s advice about
preferring UMDF. UMDF V2.0 will be a great choice when it
supports the majority of systems in the field (either because
Microsoft decides to support UMDF 2 on systems older than
Windows 8.1 or everyone is running Windows 8.1 or later). But
until that time, everywhere you see UMDF recommended we
suggest you choose KMDF instead.

In Summary
That’s how you get started writing Windows drivers. Learn a bit
about Windows architecture, get the tools, and choose a model
for your driver.

Of course, there are lots of things we haven’t discussed in this
short article. We haven’t discussed how to install your driver
(you write something called an INF file), specific techniques for
driver development with any of the models, or strategies for
debugging your code. But we have to leave something to write
about in future issues.

We hope the above has been useful, and provided a place to

start. Happy driver writing!

THE NT INSIDER
Hey...Get Your Own!

If a colleague three cubes down with less
than stellar hygiene forwarded this on to
you and you fear that this act of kindness
may be interpreted as the start of a budding
relationship, get your own subscription at:

http://www.osronline.com/custom.cfm?nam
e=login_joinok.cfm

Follow us!

http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 20
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

the quick retrieval of the WDF File Object from a native File
Object pointer:

 WdfFileObjectWdfCanUseFsContext

 WdfFileObjectWdfCanUseFsContext2

 WdfFileObjectWdfCannotUseFsContexts

The native File Object has two context areas that are free for
use by the driver that completes the create request: FsContext
and FsContext2. While this would seem a natural place for the
Framework to store the WDF File Object, there are cases in
which these fields are already in use by another driver in the
stack or have special meaning. This then requires the
Framework to maintain its own lookup table to convert the
native File Object into a WDF File Object. Due to the fact that
the Framework cannot know the meaning of FsContext and
FsContext2 for an arbitrary device stack, WdfFileObjectWdf
CannotUseFsContexts is chosen by default.

Lastly, KMDF v1.9 adds a new value, WdfFileObjectCanBe
Optional. Unlike the previous values for this property, this is a
flag value that may optionally be combined with
WdfFileObjectWdfCanUseFsContext,WdfFileObjectWdfCanUse
FsContext2, or WdfFileObjectWdfCannotUseFsContexts. This
again has a very specific purpose resulting from potential driver
–to-driver communication cases.

All I/O in Windows is sent by way of a native File Object that
represents an open instance of a particular device object. This
means that all I/O requests have an associated File Object that
references the target device for the I/O operation. However, we
again have to deal with the case of driver–to-driver
communication. For example, Driver A may choose to send a
request to Driver B without a File Object. Or with a File Object
that points to Driver C. Without this optional flag set, if Driver B
calls the WdfRequestGetFileObject in either of these cases there
will be a KMDF Verifier exception thrown. If it is unclear
whether or not a driver falls into either of these categories, the
driver should not specify this option as it may mask a serious
issue.

Common Object Attributes
As with all KMDF objects, the WDF File Object also supports the
Common Object Attributes as defined by the
WDF_OBJECT_ATTRIBUTES structure. These attributes are
optionally supplied when calling WdfDeviceInitSetFileObject
Config to apply the WDF_FILEOBJECT_CONFIG structure to a
PWDFDEVICE_INIT structure. There are potentially a few
surprises lurking in the options available here, so we’ll go
through each of the Common Object Attributes and describe
each one as they apply for this particular object.

(CONTINUED FROM PAGE 7)

EvtCleanupCallback
The EvtCleanupCallback callback is common to all Framework
objects and indicates that either the Framework or the driver
has triggered the teardown of a Framework object. In the case
of WDF File Object, the naming is potentially confusing due to
the native File Object’s use of the term, “cleanup.”

The lifetime of a WDF File Object is tied to the underlying native
File Object. Thus, teardown of the WDF File Object does not
start until the native File Object has been destroyed. Therefore
the WDF File Object’s EvtCleanupCallback will not trigger until
after EvtFileClose.

EvtDestroyCallback
The EvtDestroyCallback callback is closely related to the
EvtCleanupCallback. While EvtCleanupCallback indicates that
teardown of a WDF object has begun, the EvtDestroyCallback
indicates that teardown is complete and the WDF reference
count of the object has gone to zero. Again, do not confuse this
with the native File Object reference count; in order for the
WDF File Object reference count to drop to zero the native File
Object reference count must already be zero. Assuming that the
driver has not done anything exotic, such as calling
WdfObjectReference on the WDF File Object, the
EvtDestroyCallback executes immediately following the
EvtCleanupCallback.

ExecutionLevel
The ExecutionLevel constraint is interesting with the WDF File
Object. The Framework disallows any create requests arriving at
IRQL >= DISPATCH_LEVEL, regardless of the ExecutionLevel
provided. The underlying issue is that some portions of the
native File Object are pageable, thus processing create requests
at IRQL >= DISPATCH_LEVEL is not architecturally defined within
Windows itself. If the driver is aware of the risks in processing
create requests at elevated IRQL and has incorporated them
into its design, there are other methods to handle this
condition. We will introduce one of the methods at the
conclusion of this article.

However, if the driver does not specify an ExecutionLevel
constraint of WdfExecutionLevelPassive, it should expect its
EvtCleanupCallback and EvtDestroyCallback to be callable at
IRQLs greater than PASSIVE_LEVEL.

SynchronizationScope
The rules for SynchronizationScope on WDF File Object are not
made entirely clear by the documentation, though are in fact
quite simple. First, it is always correct to specify a
synchronization scope of WdfSynchronizationScopeNone, which
causes the Framework to provide no specific serialization of the
WDFFILEOBJECT Event Processing Callbacks.

Next, it is never correct to specify a synchronization scope of
WdfSynchronizationScopeQueue on a WDF File Object. Earlier,
we mentioned that the WDF Request Object passed to the

(CONTINUED ON PAGE 21)

Page 21
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

EvtDeviceFileCreate Event Processing Callback is unique in that it
is not queue presented. By this we mean that the WDF Request
Object has no associated WDF Queue Object, therefore it makes
no sense to have a synchronization scope of queue. Attempts to
create a WDF Device Object with WDF File Object Event
Processing Callbacks set to WdfSynchronizationScopeQueue fail
with STATUS_INVALID_DEVICE_REQUEST.

Lastly, WdfSynchronizationScopeDevice is a valid choice only if
the parent WDF Device Object has a PASSIVE_LEVEL execution
constraint, otherwise the Framework fails the attempt to create
the device. While seemingly onerous, as mentioned previously,
processing create requests at elevated IRQL does not necessarily
make sense. If the Framework allowed a driver to specify a
synchronization scope of device with no execution level
constraint, the WDF File Object Event Processing Callbacks
would always execute at raised IRQL.

ParentObject
It is invalid to override this property for WDF File Object objects;
The parent must always be the WDF Device Object being
created.

ContextSizeOverride/ContextTypeInfo
Standard options for providing per-object context are available
for WDF File Objects.

What About Queue Presented Creates?
As an alternative to providing an EvtDeviceFileCreate Event
Processing Callback, it is possible to route create requests to a
driver created queue by calling WdfDeviceConfigureRequest
Dispatching. In this case, the create request arrives at the
queue’s EvtIoDefault Event Processing Callback and is subject to
the synchronization scope and execution level constraints

(CONTINUED FROM PAGE 20)

applied to the queue. An EvtDeviceFileCreate Event Processing
Callback may also be registered without error, though it will in
fact never execute.

What is interesting about this option is that it does not impose
the execution level constraint requirements of the
EvtDeviceFileCreate Event Processing Callback. Therefore it is
possible to route create requests to a queue with a
synchronization scope of device and no execution level
constraint, resulting in the driver’s create request processing
occurring at IRQL DISPATCH_LEVEL. In this case, the driver must
be careful to not access any members of the native File Object
that are pageable, such as the file name.

Another interesting point to note is that as a result of this
method, the create request becomes queue presented. Thus,
unlike handling create operations in your EvtDeviceFileCreate
Event Processing Callback, create requests that are handled in
EvtIoDefault as a result of request dispatching will have an
associated WDFQUEUE.

Note that even if create requests are routed to a queue, cleanup
and close operations are still only accessible via the
EvtFileCleanup and EvtFileClose Event Processing Callbacks.

Closing Remarks
We’ve found WDFFILEOBJECTs to be quite handy over the years

in the drivers we’ve written. Hopefully you too now have a

handle (get it?) on the mechanics of working with

WDFFILEOBJECTs and can start using them effectively in your

drivers.

OSR’S CORPORATE, ON-SITE TRAINING
Save Money, Travel Hassles; Gain Customized Expert Instruction

We can:

 Prepare and present a one-off, private, on-site seminar for your team to address a
specific area of deficiency or to prepare them for an upcoming project.

 Design and deliver a series of offerings with a roadmap catered to a new group of
recent hires or within an existing group.

 Work with your internal training organization/HR department to offer monthly or
quarterly seminars to your division or engineering departments company-wide.

To take advantage of our expertise in Windows internals, and in instructional design, contact an
OSR seminar consultant at +1.603.595.6500 or by email at seminars@osr.com

Follow us!

mailto:seminars@osr.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 22
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

Indeed, as Windows has evolved, the pool allocator has become
increasingly sophisticated in its management of pool. Thus, pool
is now organized by NUMA Node as well as by individual CPU.
The idea is that in order to minimize contention, each CPU will
use its own pool region first and when it needs more memory it
can get it from the NUMA node specific allocation. Some
versions of Windows will level out kernel memory allocations in
order to ensure uniform performance across the entire array of
CPUs, while application specific memory is typically allocated
from the local CPU’s pool cache (it is not restricted to that CPU,
but rather preferred by a given CPU in order to optimize
performance).

Pool Tags
When memory is allocated, a four-byte tag value can be
specified. By convention this is usually just an array of four
characters; in some circumstances the pool allocator will
interpret the high bit of the tag to have special meaning.

For those performing crash analysis, this pool tag can help in
figuring out what a given pool block represents based upon that
value. For those writing drivers, picking unique pool tags is
invaluable in tracking down and finding memory leaks as well as
aiding in forensic analysis of crashes reported by test teams and
maybe even customers.

The debugger uses a file called pooltag.txt in order to display
diagnostic information about these tag values. On my
development system this file is found in either C:\Program Files
(x86)\Windows Kits\8.0\Debuggers\x64\triage or C:\Program

(CONTINUED FROM PAGE 9)

Files (x86)\Windows Kits\8.0\Debuggers\x86\triage. On my
system these two files are identical.

This file consists of a series of lines that include the tag value
and then the corresponding “hint” that should be displayed by
the debugger:

Irp - <unknown> - Io, IRP packets

Note: if you were to look at the original code you would
see a string like ‘ prI’ in the call to ExAllocatePool
WithTag. That’s because of the little endian nature of
Windows platforms, so that the bytes appear in memory
in the “correct” order.

For someone using the debugger, this allows the use of this
information for inferring the type of a given pool region. For
example, if something is a device object, typically it will consist
of an object header (nt!_OBJECT_HEADER) followed by the
actual device object. Using this knowledge allows us to
compute the address of the object and then supply that result
to the !devobj command.

Conclusion
A basic understanding of the Windows memory allocator can be
helpful in understanding both the function of this critical OS
feature as well as in simplifying debugging, particularly of OS
components.

KERNEL DEBUGGING & CRASH ANALYSIS SEMINAR
I Tried !analyze-v...Now What?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider
attendance at OSR’s Kernel Debugging & Crash Analysis seminar.

Next presentation:

Dulles/Sterling, VA
24-28 March

For more information, visit www.osr.com/debug.html, or contact an OSR seminar coordinator at
seminars@osr.com

Follow us!

http://www.osr.com/debug.html
http://www.osr.com/debug.html
mailto:seminars@osr.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 23
www.osr.com

The NT Insider January-February 2014 © OSR Open Systems Resources, Inc.

to go old school and create sources and dirs Files and use the
Windows 7 WDK. Later, if my client or I want to upgrade that
driver, we’re going to be stuck using the same ancient build
environment or upgrading the driver project to a new, Visual
Studio integrated, WDK … but then you lose XP support. You
can’t win, basically.

Note that the problem is
similar (though not as bad) if
you need to support Windows
Server 2008 and later. You’re
stuck using the Windows 8
WDK. However, in this case –
assuming I understand this
right, I haven’t successfully
gotten it to work – you’re
supposed to be able to
upgrade your driver project
so that it works with both the
Windows 8 WDK using VS
2012 and the Windows 8.1
WDK using VS 2013. That’s
not convenient, but it’s not
great either.

And don’t even ASK me about
trying to support a single
binary that uses up-level
features on OS versions
where those features are
available. This used to work.
I know, I was part of the (then
DDK, not WDK) team that
helped spec and test it. But
today? I sure haven’t gotten
it to work, I’ll tell you that.

Last, I want to whine about my new friend, UMDF 2.0. It’s a new
Framework that’s provided for the first time in the Windows 8.1

(CONTINUED FROM PAGE 3)

WDK. It’s cool because it uses almost exactly the same syntax as
KMDF 1.x – and that’s just about the best idea since chicken and
waffles. As a result, you can try running your driver in user-
mode, and if you don’t like its performance… you can move it to
KMDF and run it in kernel-mode with a trivial amount of effort.
Awesome! What’s not to like, right? Well, there’s this one
thing: UMDF 2.0 is only supported on Windows 8.1 and later
versions of Windows. So its use is going to be limited to very
particular and special cases.

I know time marches forward, but as of today there are few
companies who will target their drivers to only Windows 8.1 and
later. I dunno… maybe for my birthday Microsoft will start

supporting UMDF 2 on older
operating systems. Now, that
would be cool. Especially if
they’ll support it back to XP.
Hey, if I’m going to dream, I
might just as well dream big.

Peter Pontificates is a regular
column by OSR Consulting
Partner, Peter Viscarola. Peter
doesn’t care if you agree or
disagree with him, but there’s
always the chance that your
comments or rebuttal could
find its way into a future
issue. Send your own
comments, rants or
distortions of fact to:
PeterPont@osr.com.

OSR IS HIRING!

Want to get pontificated to on a regular basis?
OSR is hiring one or more Software
Development Engineers to implement, test and
debug Windows kernel mode software.

We’re looking for a very talented individual (or
two) to grow into valued contributors to the
OSR engineering team, our clients, and the
community.

Do you need to be a Windows internals guru?
No—we’ll help you with that—but you DO have
to LOVE operating system internals. It’s what
we live and breathe here at OSR.

We’ve found such folks to be a rare breed, so
if this is YOU or someone you know, get in
touch with us and tell us why we can’t afford
NOT to hire you.

See www.osr.com/careers for more detail.

ADVANCED WDF DRIVER SEMINAR
Join Our Inaugural Presentation!

Palo Alto, CA
5-8 May

Phone: +1.603.595.6500
Email: seminars@osr.com

Follow us!

mailto:PeterPont@osr.com?subject=Peter%20Pontificates
http://www.osr.com/careers
http://www.osr.com/advancedwdf.html
mailto:seminars@osr.com?subject=Seminar%20interest
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

®

A private, on-site seminar format
allows you to:

 Get project specific questions
answered. OSR instructors have
the expertise to help your group
solve your toughest roadblocks.

 Customize your seminar. We
know Windows drivers and file
systems; take advantage of it.
Customize your seminar to fit
your group's specific needs.

 Focus on specific topics. Spend
extra time on topics you really
need and less time on topics you
already know.

 Provide an ideal experience.
For groups working on a project
or looking to increase their
knowledge of a particular topic,
OSR's customized on-site
seminars are ideal.

 Save money. The quote you
receive from OSR includes
everything you need. There are
never additional charges for
materials, shipping, or instructor
travel.

 Save more money. Bringing
OSR on-site to teach a seminar
costs much less then sending
several people to a public class.
And you're not paying for your
valuable developers to travel.

 Save time. Less time out of the
office for developers is a good
thing.

 Save hassles. If you don't have
space or lab equipment available,
no worries. An OSR seminar
consultant can help make
arrangements for you.

Seminar Dates Location

Kernel Debugging & Crash Analysis 24-28 March Dulles/Sterling, VA

Writing WDF Drivers 28 April—2 May Palo Alto, CA

Advanced WDF Drivers 5-8 May Palo Alto, CA

Developing File Systems 13-16 May Waltham, MA

Internals & Software Drivers 23-27 June Dulles/Sterling, VA

W hen we say “we practice what we teach”, this mantra directly translates into the value
we bring to our seminars. But don’t take our word for it...below are some results from

recent surveys of attendees of OSR seminars:

 I was VERY impressed with the content and the instructor’s knowledge of the subject
matter. All questions were answered for all students and/or researched quickly, if an
answer was not readily available. In my post-trip report, I have already recommended
that more personnel from our office attend this course.

 The seminar was great. Even with previous knowledge on WDF drivers, I left the
seminar feeling like I learned a bunch of new concepts.

 It was a very interesting, fast-paced, introduction to the development of Windows file
system drivers. The instructor was very knowledgeable and experienced, bringing
various examples from real world applications into the classroom.

 This was a good learning experience for me to enrich my Windows knowledge base.

 It was well run and covered a lot of good material. [Instructor] is obviously very
knowledgeable and presents the material in an enjoyable manner.

 The OSR seminar was a great learning experience for me. I am planning on attending
another seminar early next year.

 This was, in my opinion, the best and honestly, only class available to learn the subject
material.

 The [Instructor] is a very knowledgeable windows driver engineer and has provided us
with great training. Everyone found the training to be extremely beneficial to our future
project.

 Simply awesome. I am looking forward to attending more seminars from OSR.

http://www.osr.com/debug.html
http://www.osr.com/wdf.html
http://www.osr.com/advancedwdf.html
http://www.osr.com/fsd.html
C:/Users/dan.OSR/Documents/Add-in Express

